Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782119

RESUMO

BACKGROUND & AIMS: Transcription termination fine tunes gene expression and contributes to specify the function of RNAs in eukaryotic cells. Transcription termination of hepatitis B virus (HBV) is subjected to the recognition of the canonical polyadenylation signal (cPAS) common to all viral transcripts. The regulation of the usage of this cPAS and its impact on viral gene expression and replication is currently unknown. APPROACH & RESULTS: To unravel the regulation of HBV transcript termination, we implemented a 3' RACE-PCR assay coupled to single molecule sequencing both in in vitro infected hepatocytes and in chronically infected patients. The detection of a previously unidentified transcriptional readthrough indicated that the cPAS was not systematically recognized during HBV replication in vitro and in vivo. Gene expression downregulation experiments demonstrated a role for the RNA helicases DDX5 and DDX17 in promoting viral transcriptional readthrough, which was, in turn, associated to HBV RNA destabilization and decreased HBx protein expression. RNA and chromatin immunoprecipitation, together with mutation of cPAS sequence, suggested a direct role of DDX5 and DDX17 in functionally linking cPAS recognition to transcriptional readthrough, HBV RNA stability and replication. CONCLUSIONS: Our findings identify DDX5 and DDX17 as crucial determinants for HBV transcriptional fidelity and as host restriction factors for HBV replication. IMPACT AND IMPLICATIONS: Hepatitis B virus (HBV) covalently closed circular (ccc)DNA degradation or functional inactivation remains the holy grail to be attained to achieve HBV cure. Transcriptional fidelity is a cornerstone in gene expression regulation. Here, we demonstrate that two helicases, DDX5 and DDX17, inhibit the recognition of HBV polyadenylation signal and transcriptional termination, thus decreasing HBV RNA stability and acting as restriction factors for efficient cccDNA transcription and viral replication. The observation that DDX5 and DDX17 are downregulated in HBV chronically infected patients suggests a role for the helicases in HBV persistence in vivo. These results open new perspectives for researchers aiming at identifying new targets to neutralise cccDNA transcription.

2.
Nat Commun ; 15(1): 2487, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514619

RESUMO

The cellular mechanisms underlying axonal morphogenesis are essential to the formation of functional neuronal networks. We previously identified the autism-linked kinase NUAK1 as a central regulator of axon branching through the control of mitochondria trafficking. However, (1) the relationship between mitochondrial position, function and axon branching and (2) the downstream effectors whereby NUAK1 regulates axon branching remain unknown. Here, we report that mitochondria recruitment to synaptic boutons supports collateral branches stabilization rather than formation in mouse cortical neurons. NUAK1 deficiency significantly impairs mitochondrial metabolism and axonal ATP concentration, and upregulation of mitochondrial function is sufficient to rescue axonal branching in NUAK1 null neurons in vitro and in vivo. Finally, we found that NUAK1 regulates axon branching through the mitochondria-targeted microprotein BRAWNIN. Our results demonstrate that NUAK1 exerts a dual function during axon branching through its ability to control mitochondrial distribution and metabolic activity.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Axônios/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo
3.
Nucleic Acids Res ; 52(4): 1527-1543, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38272542

RESUMO

The NF-κB protein p65/RelA plays a pivotal role in coordinating gene expression in response to diverse stimuli, including viral infections. At the chromatin level, p65/RelA regulates gene transcription and alternative splicing through promoter enrichment and genomic exon occupancy, respectively. The intricate ways in which p65/RelA simultaneously governs these functions across various genes remain to be fully elucidated. In this study, we employed the HTLV-1 Tax oncoprotein, a potent activator of NF-κB, to investigate its influence on the three-dimensional organization of the genome, a key factor in gene regulation. We discovered that Tax restructures the 3D genomic landscape, bringing together genes based on their regulation and splicing patterns. Notably, we found that the Tax-induced gene-gene contact between the two master genes NFKBIA and RELA is associated with their respective changes in gene expression and alternative splicing. Through dCas9-mediated approaches, we demonstrated that NFKBIA-RELA interaction is required for alternative splicing regulation and is caused by an intragenic enrichment of p65/RelA on RELA. Our findings shed light on new regulatory mechanisms upon HTLV-1 Tax and underscore the integral role of p65/RelA in coordinated regulation of NF-κB-responsive genes at both transcriptional and splicing levels in the context of the 3D genome.


The NF-κB pathway is essential for coordinating gene expression in response to various stimuli, including viral infections. Most studies have focused on the role of NF-κB in transcriptional regulation. In the present study, the impact of the potent NF-κB activator HTLV-1 Tax oncoprotein on the three-dimensional organization of the genome was investigated. Tax-mediated NF-κB activation was found to restructure the 3D genomic landscape in cells and to bring genes together in multigene complexes that are coordinately regulated either transcriptionally or through alternative splicing by NF-κB. Induced coordinate changes in transcription and alternative splicing included the two master genes of NF-κB pathway NFKBIA and RELA. The findings have significant implications for understanding cell fate determination and disease development associated with HTLV-1 infection, as well as chronic NF-κB activation in various human inflammatory diseases and cancer.


Assuntos
Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Subunidade p50 de NF-kappa B , Processamento Alternativo/genética , Montagem e Desmontagem da Cromatina/genética , Produtos do Gene tax/genética , Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Ativação Transcricional , Humanos , Subunidade p50 de NF-kappa B/metabolismo
4.
Database (Oxford) ; 20232023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38128543

RESUMO

One challenge faced by scientists from the alternative RNA splicing field is to decode the cooperative or antagonistic effects of splicing factors (SFs) to understand and eventually predict splicing outcomes on a genome-wide scale. In this manuscript, we introduce SplicingLore, an open-access database and web resource that help to fill this gap in a straightforward manner. The database contains a collection of RNA-sequencing-derived lists of alternative exons regulated by a total of 75 different SFs. All datasets were processed in a standardized manner, ensuring valid comparisons and correlation analyses. The user can easily retrieve a factor-specific set of differentially included exons from the database or provide a list of exons and search which SF(s) control(s) their inclusion. Our simple workflow is fast and easy to run, and it ensures a reliable calculation of correlation scores between the tested datasets. As a proof of concept, we predicted and experimentally validated a novel functional cooperation between the RNA helicases DDX17 and DDX5 and the heterogeneous nuclear ribonucleoprotein C (HNRNPC) protein. SplicingLore is available at https://splicinglore.ens-lyon.fr/. Database URL:  https://splicinglore.ens-lyon.fr/.


Assuntos
Processamento Alternativo , Splicing de RNA , Humanos , Fatores de Processamento de RNA/genética , Splicing de RNA/genética , Genoma , Éxons/genética
5.
Cell Mol Life Sci ; 80(11): 335, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37882878

RESUMO

Muscleblind-like splicing regulators (MBNLs) activate or repress the inclusion of alternative splicing (AS) events, enabling the developmental transition of fetal mRNA splicing isoforms to their adult forms. Herein, we sought to elaborate the mechanism by which MBNLs mediate AS related to biological processes. We evaluated the functional role of DEAD-box (DDX) RNA helicases, DDX5 and DDX17 in MBNL-dependent AS regulation. Whole-transcriptome analysis and validation approaches revealed a handful of MBNLs-dependent AS events to be affected by DDX5 and DDX17 in mostly an opposite manner. The opposite expression patterns of these two groups of factors during muscle development and coordination of fetal-to-adult splicing transition indicate the importance of these proteins at early stages of development. The identified pathways of how the helicases modulate MBNL splicing activity include DDX5 and DDX17-dependent changes in the ratio of MBNL splicing isoforms and most likely changes in accessibility of MBNL-binding sites. Another pathway involves the mode of action of the helicases independent of MBNL activity. These findings lead to a deeper understanding of the network of interdependencies between RNA-binding proteins and constitute a valuable element in the discussion on developmental homeostasis and pathological states in which the studied protein factors play a significant role.


Assuntos
Processamento Alternativo , RNA Helicases , Processamento Alternativo/genética , RNA Helicases/genética , Splicing de RNA , Isoformas de Proteínas/genética , Sítios de Ligação/genética
6.
Nucleic Acids Res ; 50(16): 9226-9246, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36039747

RESUMO

DDX5 and DDX17 are DEAD-box RNA helicase paralogs which regulate several aspects of gene expression, especially transcription and splicing, through incompletely understood mechanisms. A transcriptome analysis of DDX5/DDX17-depleted human cells confirmed the large impact of these RNA helicases on splicing and revealed a widespread deregulation of 3' end processing. In silico analyses and experiments in cultured cells showed the binding and functional contribution of the genome organizing factor CTCF to chromatin sites at or near a subset of DDX5/DDX17-dependent exons that are characterized by a high GC content and a high density of RNA Polymerase II. We propose the existence of an RNA helicase-dependent relationship between CTCF and the dynamics of transcription across DNA and/or RNA structured regions, that contributes to the processing of internal and terminal exons. Moreover, local DDX5/DDX17-dependent chromatin loops spatially connect RNA helicase-regulated exons with their cognate promoter, and we provide the first direct evidence that de novo gene looping modifies alternative splicing and polyadenylation. Overall our findings uncover the impact of DDX5/DDX17-dependent chromatin folding on pre-messenger RNA processing.


Assuntos
RNA Helicases DEAD-box , RNA , Humanos , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Helicases DEAD-box/metabolismo , Processamento Alternativo , Cromatina/genética
7.
Nat Commun ; 13(1): 3841, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35789154

RESUMO

Brain dysfunction in myotonic dystrophy type 1 (DM1), the prototype of toxic RNA disorders, has been mainly attributed to neuronal RNA misprocessing, while little attention has been given to non-neuronal brain cells. Here, using a transgenic mouse model of DM1 that expresses mutant RNA in various brain cell types (neurons, astroglia, and oligodendroglia), we demonstrate that astrocytes exhibit impaired ramification and polarization in vivo and defects in adhesion, spreading, and migration. RNA-dependent toxicity and phenotypes are also found in human transfected glial cells. In line with the cell phenotypes, molecular analyses reveal extensive expression and accumulation of toxic RNA in astrocytes, which result in RNA spliceopathy that is more severe than in neurons. Astrocyte missplicing affects primarily transcripts that regulate cell adhesion, cytoskeleton, and morphogenesis, and it is confirmed in human brain tissue. Our findings demonstrate that DM1 impacts astrocyte cell biology, possibly compromising their support and regulation of synaptic function.


Assuntos
Distrofia Miotônica , Animais , Astrócitos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Distrofia Miotônica/metabolismo , RNA/genética , Proteínas de Ligação a RNA/metabolismo , Aderências Teciduais
9.
Front Cell Neurosci ; 15: 662035, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025359

RESUMO

Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by a non-coding CTG repeat expansion in the DMPK gene. This mutation generates a toxic CUG RNA that interferes with the RNA processing of target genes in multiple tissues. Despite debilitating neurological impairment, the pathophysiological cascade of molecular and cellular events in the central nervous system (CNS) has been less extensively characterized than the molecular pathogenesis of muscle/cardiac dysfunction. Particularly, the contribution of different cell types to DM1 brain disease is not clearly understood. We first used transcriptomics to compare the impact of expanded CUG RNA on the transcriptome of primary neurons, astrocytes and oligodendrocytes derived from DMSXL mice, a transgenic model of DM1. RNA sequencing revealed more frequent expression and splicing changes in glia than neuronal cells. In particular, primary DMSXL oligodendrocytes showed the highest number of transcripts differentially expressed, while DMSXL astrocytes displayed the most severe splicing dysregulation. Interestingly, the expression and splicing defects of DMSXL glia recreated molecular signatures suggestive of impaired cell differentiation: while DMSXL oligodendrocytes failed to upregulate a subset of genes that are naturally activated during the oligodendroglia differentiation, a significant proportion of missplicing events in DMSXL oligodendrocytes and astrocytes increased the expression of RNA isoforms typical of precursor cell stages. Together these data suggest that expanded CUG RNA in glial cells affects preferentially differentiation-regulated molecular events. This hypothesis was corroborated by gene ontology (GO) analyses, which revealed an enrichment for biological processes and cellular components with critical roles during cell differentiation. Finally, we combined exon ontology with phosphoproteomics and cell imaging to explore the functional impact of CUG-associated spliceopathy on downstream protein metabolism. Changes in phosphorylation, protein isoform expression and intracellular localization in DMSXL astrocytes demonstrate the far-reaching impact of the DM1 repeat expansion on cell metabolism. Our multi-omics approaches provide insight into the mechanisms of CUG RNA toxicity in the CNS with cell type resolution, and support the priority for future research on non-neuronal mechanisms and proteomic changes in DM1 brain disease.

10.
Nat Commun ; 11(1): 3045, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546717

RESUMO

Chronic NF-κB activation in inflammation and cancer has long been linked to persistent activation of NF-κB-responsive gene promoters. However, NF-κB factors also massively bind to gene bodies. Here, we demonstrate that recruitment of the NF-κB factor RELA to intragenic regions regulates alternative splicing upon NF-κB activation by the viral oncogene Tax of HTLV-1. Integrative analyses of RNA splicing and chromatin occupancy, combined with chromatin tethering assays, demonstrate that DNA-bound RELA interacts with and recruits the splicing regulator DDX17, in an NF-κB activation-dependent manner. This leads to alternative splicing of target exons due to the RNA helicase activity of DDX17. Similar results were obtained upon Tax-independent NF-κB activation, indicating that Tax likely exacerbates a physiological process where RELA provides splice target specificity. Collectively, our results demonstrate a physical and direct involvement of NF-κB in alternative splicing regulation, which significantly revisits our knowledge of HTLV-1 pathogenesis and other NF-κB-related diseases.


Assuntos
Processamento Alternativo/fisiologia , Produtos do Gene tax/metabolismo , NF-kappa B/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica , Produtos do Gene tax/genética , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Humanos , Leucócitos Mononucleares/virologia , NF-kappa B/genética , Oncogenes , Fator de Transcrição RelA/metabolismo
11.
Genome Biol ; 20(1): 259, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783898

RESUMO

BACKGROUND: Nucleotide composition bias plays an important role in the 1D and 3D organization of the human genome. Here, we investigate the potential interplay between nucleotide composition bias and the regulation of exon recognition during splicing. RESULTS: By analyzing dozens of RNA-seq datasets, we identify two groups of splicing factors that activate either about 3200 GC-rich exons or about 4000 AT-rich exons. We show that splicing factor-dependent GC-rich exons have predicted RNA secondary structures at 5' ss and are dependent on U1 snRNP-associated proteins. In contrast, splicing factor-dependent AT-rich exons have a large number of decoy branch points, SF1- or U2AF2-binding sites and are dependent on U2 snRNP-associated proteins. Nucleotide composition bias also influences local chromatin organization, with consequences for exon recognition during splicing. Interestingly, the GC content of exons correlates with that of their hosting genes, isochores, and topologically associated domains. CONCLUSIONS: We propose that regional nucleotide composition bias over several dozens of kilobase pairs leaves a local footprint at the exon level and induces constraints during splicing that can be alleviated by local chromatin organization at the DNA level and recruitment of specific splicing factors at the RNA level. Therefore, nucleotide composition bias establishes a direct link between genome organization and local regulatory processes, like alternative splicing.


Assuntos
Composição de Bases , Splicing de RNA , Éxons , Genoma Humano , Humanos
12.
EMBO Rep ; 20(9): e48235, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31353801

RESUMO

Caspase-4, the cytosolic LPS sensor, and gasdermin D, its downstream effector, constitute the non-canonical inflammasome, which drives inflammatory responses during Gram-negative bacterial infections. It remains unclear whether other proteins regulate cytosolic LPS sensing, particularly in human cells. Here, we conduct a genome-wide CRISPR/Cas9 screen in a human monocyte cell line to identify genes controlling cytosolic LPS-mediated pyroptosis. We find that the transcription factor, IRF2, is required for pyroptosis following cytosolic LPS delivery and functions by directly regulating caspase-4 levels in human monocytes and iPSC-derived monocytes. CASP4, GSDMD, and IRF2 are the only genes identified with high significance in this screen highlighting the simplicity of the non-canonical inflammasome. Upon IFN-γ priming, IRF1 induction compensates IRF2 deficiency, leading to robust caspase-4 expression. Deficiency in IRF2 results in dampened inflammasome responses upon infection with Gram-negative bacteria. This study emphasizes the central role of IRF family members as specific regulators of the non-canonical inflammasome.


Assuntos
Caspases Iniciadoras/metabolismo , Fator Regulador 2 de Interferon/metabolismo , Caspases Iniciadoras/genética , Morte Celular/efeitos dos fármacos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Humanos , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 2 de Interferon/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/farmacologia , Monócitos/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Células U937
13.
Genome Res ; 29(5): 711-722, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962178

RESUMO

The inclusion of exons during the splicing process depends on the binding of splicing factors to short low-complexity regulatory sequences. The relationship between exonic splicing regulatory sequences and coding sequences is still poorly understood. We demonstrate that exons that are coregulated by any given splicing factor share a similar nucleotide composition bias and preferentially code for amino acids with similar physicochemical properties because of the nonrandomness of the genetic code. Indeed, amino acids sharing similar physicochemical properties correspond to codons that have the same nucleotide composition bias. In particular, we uncover that the TRA2A and TRA2B splicing factors that bind to adenine-rich motifs promote the inclusion of adenine-rich exons coding preferentially for hydrophilic amino acids that correspond to adenine-rich codons. SRSF2 that binds guanine/cytosine-rich motifs promotes the inclusion of GC-rich exons coding preferentially for small amino acids, whereas SRSF3 that binds cytosine-rich motifs promotes the inclusion of exons coding preferentially for uncharged amino acids, like serine and threonine that can be phosphorylated. Finally, coregulated exons encoding amino acids with similar physicochemical properties correspond to specific protein features. In conclusion, the regulation of an exon by a splicing factor that relies on the affinity of this factor for specific nucleotide(s) is tightly interconnected with the exon-encoded physicochemical properties. We therefore uncover an unanticipated bidirectional interplay between the splicing regulatory process and its biological functional outcome.


Assuntos
Processamento Alternativo , Éxons/genética , Sítios de Splice de RNA/genética , Fatores de Processamento de RNA/metabolismo , Aminoácidos/química , Composição de Bases/genética , Linhagem Celular , Código Genético , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Íntrons/genética , Motivos de Nucleotídeos/genética , Análise de Sequência de Proteína , Análise de Sequência de RNA , Fatores de Processamento de Serina-Arginina/metabolismo
14.
BMB Rep ; 51(12): 613-622, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30293550

RESUMO

RNA helicases DDX5 and DDX17 are multitasking proteins that regulate gene expression in different biological contexts through diverse activities. Special attention has long been paid to their function as coregulators of transcription factors, providing insight about their functional association with a number of chromatin modifiers and remodelers. However, to date, the variety of described mechanisms has made it difficult to understand precisely how these proteins work at the molecular level, and the contribution of their ATPase domain to these mechanisms remains unclear as well. In light of their association with long noncoding RNAs that are key epigenetic regulators, an emerging view is that DDX5 and DDX17 may act through modulating the activity of various ribonucleoprotein complexes that could ensure their targeting to specific chromatin loci. This review will comprehensively describe the current knowledge on these different mechanisms. We will also discuss the potential roles of DDX5 and DDX17 on the 3D chromatin organization and how these could impact gene expression at the transcriptional and post-transcriptional levels. [BMB Reports 2018; 51(12): 613-622].


Assuntos
Cromatina/metabolismo , RNA Helicases DEAD-box/metabolismo , Animais , Montagem e Desmontagem da Cromatina , RNA Helicases DEAD-box/química , Humanos , Processamento de Proteína Pós-Traducional , RNA não Traduzido/química , RNA não Traduzido/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
15.
Nucleic Acids Res ; 46(15): 7686-7700, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29931089

RESUMO

The Repressor Element 1-silencing transcription factor (REST) represses a number of neuronal genes in non-neuronal cells or in undifferentiated neural progenitors. Here, we report that the DEAD box RNA helicase DDX17 controls important REST-related processes that are critical during the early phases of neuronal differentiation. First, DDX17 associates with REST, promotes its binding to the promoter of a subset of REST-targeted genes and co-regulates REST transcriptional repression activity. During neuronal differentiation, we observed a downregulation of DDX17 along with that of the REST complex that contributes to the activation of neuronal genes. Second, DDX17 and its paralog DDX5 regulate the expression of several proneural microRNAs that are known to target the REST complex during neurogenesis, including miR-26a/b that are also direct regulators of DDX17 expression. In this context, we propose a new mechanism by which RNA helicases can control the biogenesis of intronic miRNAs. We show that the processing of the miR-26a2 precursor is dependent on RNA helicases, owing to an intronic regulatory region that negatively impacts on both miRNA processing and splicing of its host intron. Our work places DDX17 in the heart of a pathway involving REST and miRNAs that allows neuronal gene repression.


Assuntos
RNA Helicases DEAD-box/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Proteínas Repressoras/genética , Linhagem Celular Tumoral , RNA Helicases DEAD-box/metabolismo , Humanos , Células MCF-7 , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Proteínas Repressoras/metabolismo
16.
Sci Rep ; 8(1): 4307, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523794

RESUMO

Genome-wide analyses estimate that more than 90% of multi exonic human genes produce at least two transcripts through alternative splicing (AS). Various bioinformatics methods are available to analyze AS from RNAseq data. Most methods start by mapping the reads to an annotated reference genome, but some start by a de novo assembly of the reads. In this paper, we present a systematic comparison of a mapping-first approach (FARLINE) and an assembly-first approach (KISSPLICE). We applied these methods to two independent RNAseq datasets and found that the predictions of the two pipelines overlapped (70% of exon skipping events were common), but with noticeable differences. The assembly-first approach allowed to find more novel variants, including novel unannotated exons and splice sites. It also predicted AS in recently duplicated genes. The mapping-first approach allowed to find more lowly expressed splicing variants, and splice variants overlapping repeats. This work demonstrates that annotating AS with a single approach leads to missing out a large number of candidates, many of which are differentially regulated across conditions and can be validated experimentally. We therefore advocate for the combined use of both mapping-first and assembly-first approaches for the annotation and differential analysis of AS from RNAseq datasets.


Assuntos
Processamento Alternativo , Análise de Sequência de RNA/métodos , Software , Humanos , Sítios de Splice de RNA , Análise de Sequência de RNA/normas
17.
Methods Mol Biol ; 1687: 157-169, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29067662

RESUMO

Mutation-induced exon skipping in the DMD gene can modulate the severity of the phenotype in patients with Duchenne or Becker Muscular Dystrophy. These alternative splicing events are most likely the result of changes in recruitment of splicing factors at cis-acting elements in the mutated DMD pre-mRNA. The identification of proteins involved can be achieved by an affinity purification procedure. Here, we provide a detailed protocol for the in vitro RNA binding assay that we routinely apply to explore molecular mechanisms underlying splicing defects in the DMD gene. In vitro transcribed RNA probes containing either the wild type or mutated sequence are oxidized and bound to adipic acid dihydrazide-agarose beads. Incubation with a nuclear extract allows the binding of nuclear proteins to the RNA probes. The unbound proteins are washed off and then the specifically RNA-bound proteins are released from the beads by an RNase treatment. After separation by SDS-PAGE, proteins that display differential binding affinities for the wild type and mutant RNA probes are identified by mass spectrometry.


Assuntos
Distrofina/genética , Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/uso terapêutico , Processamento Alternativo/genética , Distrofina/uso terapêutico , Éxons/genética , Humanos , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos Antissenso/genética , Precursores de RNA/genética , Fatores de Processamento de RNA/genética , Deleção de Sequência/genética
19.
Genome Res ; 27(6): 1087-1097, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28420690

RESUMO

Transcriptomic genome-wide analyses demonstrate massive variation of alternative splicing in many physiological and pathological situations. One major challenge is now to establish the biological contribution of alternative splicing variation in physiological- or pathological-associated cellular phenotypes. Toward this end, we developed a computational approach, named "Exon Ontology," based on terms corresponding to well-characterized protein features organized in an ontology tree. Exon Ontology is conceptually similar to Gene Ontology-based approaches but focuses on exon-encoded protein features instead of gene level functional annotations. Exon Ontology describes the protein features encoded by a selected list of exons and looks for potential Exon Ontology term enrichment. By applying this strategy to exons that are differentially spliced between epithelial and mesenchymal cells and after extensive experimental validation, we demonstrate that Exon Ontology provides support to discover specific protein features regulated by alternative splicing. We also show that Exon Ontology helps to unravel biological processes that depend on suites of coregulated alternative exons, as we uncovered a role of epithelial cell-enriched splicing factors in the AKT signaling pathway and of mesenchymal cell-enriched splicing factors in driving splicing events impacting on autophagy. Freely available on the web, Exon Ontology is the first computational resource that allows getting a quick insight into the protein features encoded by alternative exons and investigating whether coregulated exons contain the same biological information.


Assuntos
Processamento Alternativo , Éxons , Perfilação da Expressão Gênica/métodos , Genoma Humano , Anotação de Sequência Molecular/métodos , Transcriptoma , Autofagia , Linhagem Celular Tumoral , Ontologia Genética , Estudo de Associação Genômica Ampla , Humanos , Células MCF-7 , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Transdução de Sinais , Software
20.
Nat Rev Mol Cell Biol ; 17(7): 426-38, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27251421

RESUMO

RNA helicases comprise the largest family of enzymes involved in the metabolism of mRNAs, the processing and fate of which rely on their packaging into messenger ribonucleoprotein particles (mRNPs). In this Review, we describe how the capacity of some RNA helicases to either remodel or lock the composition of mRNP complexes underlies their pleiotropic functions at different steps of the gene expression process. We illustrate the roles of RNA helicases in coordinating gene expression steps and programmes, and propose that RNA helicases function as molecular drivers and guides of the progression of their mRNA substrates from one RNA-processing factory to another, to a productive mRNA pool that leads to protein synthesis or to unproductive mRNA pools that are stored or degraded.


Assuntos
Regulação da Expressão Gênica , RNA Helicases/fisiologia , Animais , Expressão Gênica , Humanos , Splicing de RNA , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...