Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 21(26): 9447-53, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26013759

RESUMO

Among various N-heterocyclic carbenes (NHCs) tested, only 1,3-bis(tert-butyl)imidazol-2-ylidene (NHC(tBu) ) proved to selectively promote the catalytic conjugate addition of alcohols onto (meth)acrylate substrates. This rather rare example of NHC-catalyzed 1,4-addition of alcohols was investigated as a simple means to trigger the polymerization of both methyl methacrylate and methyl acrylate (MMA and MA, respectively). Well-defined α-alkoxy poly(methyl (meth)acrylate) (PM(M)A) chains, the molar masses of which could be controlled by the initial [(meth)acrylate]0/[ROH]0 molar ratio, were ultimately obtained in N,N-dimethylformamide at 25 °C. A hydroxyl-terminated poly(ethylene oxide) (PEO-OH) macro-initiator was also employed to directly access PEO-b-PMMA amphiphilic block copolymers. Investigations into the reaction mechanism by DFT calculations revealed the occurrence of two competitive concerted pathways, involving either the activation of the alcohol or that of the monomer by NHC(tBu) .

2.
Chemistry ; 20(14): 3989-97, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24604823

RESUMO

The activation behavior of two N-heterocyclic carbenes (NHCs), namely, 1,3-bis(isopropyl)imidazol-2-ylidene(NHCiPr) and 1,3-bis(tert-butyl) imidazol-2-ylidene (NHCtBu), as organic nucleophiles in the reaction with methyl methacrylate (MMA) is described. NHCtBu allows the polymerization of MMA in DMF at room temperature and in toluene at 50 °C, whereas NHCiPr reacts with two molecules of MMA, forming an unprecedented imidazolium-enolate cyclodimer (NHCiPr/MMA=1:2). It is proposed that the reaction mechanism occurs by initial 1,4-nucleophilic addition of NHCiPr to MMA, generating a zwitterionic enolate 2, followed by addition of 2 to a second MMA molecule, forming a linear imidazolium-enolate 3 (NHCiPr/MMA=1:2). Proton transfer, generating intermediate 5, followed by cyclization and release of methanol yielded the aforementioned zwitterionic cyclodimer 1:2 adduct 7, the molecular structure of which has been established by NMR spectroscopy, X-ray diffraction, and mass spectrometry. This unexpected difference between NHCtBu and NHCiPr in the reaction with MMA (polymerization and cyclodimerization, respectively) can be rationalized by using DFT calculations. In particular, the nature of the NHC strongly influences the cyclodimerization pathway, the cyclization of 5 and the release of methanol are the discriminating step and limiting step, respectively. In the case of NHCtBu, both steps are strongly disfavoured compared with that of NHCiPr (energetic difference of around 14 and 9 kcal mol(-1), respectively), preventing the cyclization mechanism from a kinetic viewpoint. Moreover, addition of a third molecule of MMA in the polymerization pathway results in a lower activation barrier than that of the limiting step in the cyclodimerization pathway (difference of around 14 kcal mol(-1)), in agreement with the formation of polymethyl methacrylate (PMMA) by using NHCtBu as nucleophile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA