Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 322: 103047, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976913

RESUMO

The depletion of high-grade and coarse-grain ores has led to an increasing demand for the development of efficient separation technologies for low-grade and fine-grain ores. However, conventional froth flotation techniques are not adequate to efficiently recover fine and ultrafine particles (typically <10-15 µm) due to the low collision probability between these particles and the relatively large bubbles used in the process. The introduction of microbubbles has shown promise in enhancing particle recovery, making it a subject of significant interest. Thus, this review focuses on microbubble generation methods that have the potential to be scaled up for industrial applications, with a specific emphasis on their suitability for froth flotation. The methods are categorized based on their scalability: high-hydrodynamic cavitation, porous media/medium-dissolved air, electrolysis/low-microfluidics, and acoustic methods. The bubble generation mechanisms, characteristics, advantages and limitations of each method and its applications in froth flotation are discussed to provide suggestions for improvement. There is still no appropriate technology that can optimize bubble size distribution, production rate and cost together for industrial froth flotation application. Therefore, novel approaches of combining multiple methods are also explored to achieve the potential synergic effects. By addressing the limitations of current microbubble generation methods and proposing potential enhancements, this review aims to contribute to the development of efficient and cost-effective microbubble generation technologies for fine and ultrafine particles in the froth flotation industry.

2.
Langmuir ; 37(12): 3648-3661, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33745278

RESUMO

The motion of particles in a monolayer induced by the coalescing of a bare bubble with a planar air-water interface was investigated in a modified Langmuir trough. Experiments were performed to understand the effect of particle hydrophobicity, subphase pH, packing density, the presence of a weak surfactant, and particle size distribution on the behavior of particle movement in the monolayer during the coalescence process. Video tracking software was used to track the particles and extract data based on the video footage. Visual inspection indicated that the coalescence of the bubble with the monolayer was a chaotic process which led the interface to oscillate to an extent that the particles underwent complete rearrangement. A simple analysis was carried out on the main forces involved in particle motion and rearrangement at the oscillating air-water interface. The motion characteristic of particles was evaluated by speed and mean-square displacement (MSD). The results showed that the butanol-treated particles had higher speed and MSD than the particles with a stronger affinity to the air-water interface. Similar results were also found at high subphase pH and low packing factor.

3.
Adv Colloid Interface Sci ; 270: 108-122, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31202129

RESUMO

The coalescence and break-up of bubbles are important steps in many industrial processes. To date, most of the literature has been focussed on the coalescence process which has been studied using high speed cinematographic techniques. However, bubble break-up is equally important and requires further research. This review essentially details the break-up process and initially summarizes the different types of bubble deformation processes which lead to break-up. Break-up is considered in high and low turbulent (pseudo-static) conditions and the effect of fluctuations and shear forces on the break-up is reviewed. Different mechanisms of break-up are discussed including shearing-off, coalescence induced pitching and impact pinching following air entrapment. Also, the influence of bubble size, interfacial stability, and surfactant on break-up are reviewed and a summary of recent experimental techniques presented. Finally, the break-up process which occurs in micro-fluidics is summarized.

4.
Front Chem ; 6: 348, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155463

RESUMO

An experimental apparatus was developed based on the Langmuir-Blodgett trough design to investigate the compression of monolayers of micron size spherical glass particles at the air-water interface and the interaction of an air bubble with the monolayers. The setup modifies the regular Langmuir-Blodgett trough by using a deep and clear glass cell. The cell allowed both the optical observation of the particle monolayer and the insertion of a capillary to produce a bubble under the layer of particles. Surface pressure-area (Π-A) isotherms were measured while the particles rearranged at the interface during compression and expansion for different pH values and particle wettability. We also analyzed the motion of particles in the monolayer by the surface pressure and packing factor to gain further insights into the behavior of particles during the coalescence process. The results suggested that the coalescence of a bubble was dependent on the formation of a defect in the particle layer and the defect size was both strongly influenced by particle hydrophobicity and the pH of the subphase.

5.
Langmuir ; 32(25): 6226-38, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27223404

RESUMO

Stability of bubbles laden with particles of different densities was investigated. Capillary-held bubbles were produced and coated with particles across the density range of 1.2-3.6 g·cm(-3). The materials used were poly(methyl methacrylate) (PMMA), glass, and anatase. The interaction of the bubbles, once brought into contact, was monitored using high-speed video recording. Visual inspection indicated that denser particles were more easily displaced during the contact of the bubbles and therefore the PMMA particles provided a particle barrier more resistant to coalescence. The coalescence events yielded information on the surface properties of the bubble and the detachment of particles. The attached particles commonly dampen the oscillation of the coalesced bubbles through viscous drag and change in the surface properties (e.g., area-exclusion principle). The dampening of the oscillation generally leads to a reduced mass of particles detaching from the bubble surface. It was found that the different materials investigated did not offer clear evidence of the effect of particle detachment on the bubble surface properties in the present systems. On the other hand, the detachment of different particle materials seemed to be consistent with one another when comparing the attachment and detachment forces exerted on the particles based on their density, size, and hydrophobicity. It was concluded that particles of lower density are more effective in stabilizing interfaces, and thus particle density is an important parameter in the selection of materials for the handling of dispersions.

6.
Adv Colloid Interface Sci ; 225: 114-33, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26344866

RESUMO

Particle-stabilised foams (or froths) form the fundamental framework of industrial processes like froth flotation. This review provides an overview of the effects of particles on bubble surfaces. The characteristics of the particles have a profound effect on the stability of the bubbles although the stabilisation mechanisms may differ. It is well known that layers of particles may provide a steric barrier between two interfaces, which prevents the coalescence of bubbles. Although perhaps considered of lesser importance, it is interesting to note that particles may affect the bubble surface and momentarily suppress coalescence despite being absent from the film separating two bubbles. Foams are at best metastable and coalescence occurs to achieve a state of minimum energy. Despite this, particles have been reported to stabilise bubbles for significant periods of time. Bubble coalescence is accompanied by a release of energy triggered by the sudden change in surface area. This produces a distinctive oscillation of the bubble surface, which may be influenced by the presence of incompressible particles yielding unique surface properties. A survey of the literature shows that the properties of these composite materials are greatly affected by the physicochemical characteristics of the particles such as hydrophobicity and size. The intense energy released during the coalescence of bubbles may be sufficient to expel particles from the bubble surface. It is noted that the detachment of particles may preferentially occur from specific locations on the bubble surface. Examination of the research accounts again reveals that the properties of the particles may affect their detachment upon the oscillation of the bubble surface. However, it is believed that most parameters affecting the detachment of particles are in fact modifying the dynamics of the three-phase line of contact. Both the oscillation of a coalescing bubble and the resulting detachment of particles are highly dynamic processes. They would greatly benefit from computer simulation studies.

7.
Soft Matter ; 11(39): 7728-38, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26296006

RESUMO

The interactions between two individual water droplets were investigated in air using a combination of coalescence rig and high speed video camera. This combination allows the visualization of droplet coalescence dynamics with millisecond resolution which provides information on droplet stability. Bare water droplets coalesced rapidly upon contact, while droplet stability was achieved by coating the droplets with polystyrene particles carrying pH-responsive poly[2-(diethylamino)ethyl methacrylate] hairs (PDEA-PS particles) to form liquid marbles. The asymmetric interaction of a water droplet (pH 3 or 10) armoured with the PDEA-PS particles (liquid marble) with a bare droplet at pH 3 exhibited intermediate stability with coalescence observed following an induction time. The induction time was longer for the pH 10 liquid marble, where the PDEA-PS particles have a hydrophobic surface, than in the case of a pH 3 liquid marble, where the PDEA-PS particles have a hydrophilic surface. Furthermore, film formation of PDEA-PS particles on the liquid marble surface with toluene vapour confirmed capsule formation which prevented coalescence with the neighbouring water droplet instead wetting the capsule upon contact within 3 milliseconds. This study illuminates the stability of individual particle-stabilized droplets and has potential impact on processes and formulations which involve their interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...