Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 2): 124786, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37169046

RESUMO

Chitosan/bentonite beads (CsB) composites were prepared from chitosan (Cs) and bentonite (B) and cross-linked with epichlorohydrin for removal of reactive orange 16 (RO16) and methylene blue (MB). The adsorption results have shown that the (Cs20B80), 20 % wt of (Cs) and 80 % (B), was selected as the best adsorbent for (MB) and (RO16) dyes. SEM, EDX, FTIR, BET, and pHpzc were implemented to investigate the features of Cs, B, and Cs20B80 samples. The influence of contact time (0-72 h), initial RO16 concentration (15-300 mg/L), temperature (30, 40, and 50 °C), the quantity of adsorbent (1-4 g/L), ion strength (0.1-1 M), and solution pH (3-10) on RO16 adsorption onto Cs20B80 were explored. The pseudo-second-order and the Langmuir models fit adequately the adsorption kinetic results and the isotherms ones respectively. Also, the maximal monolayer capacities calculated using the non-linear form of the Langmuir isotherm are 55.27, 55.29, and 70.80 mg/g, at 30, 40 and 50 °C. Based to the statistical physics model, the RO16 could be retained on the surface of Cs20B80 through a non-parallel orientation. The RO16 adsorption process is endothermic and natural, as demonstrated by thermodynamic studies. After three regeneration cycles, the Cs20B80 composite has shown an adsorption capacity of around 20 % compared to the initial one. The adsorption energy of RO16 onto Cs, B, and Cs20B80 examined using the Monte Carlo simulation method (MC) ranged from -164.8 to -303.7 (kcal/mol), showing the potential of the three adsorbants for RO16 dye. Also, the process of adsorption of RO16 dye on the surface of Cs20B80 composite indicates several kinds of physical interactions, involving electrostatic interaction, hydrogen bonding, and π-π interactions, this finding was proved theoretically via molecular dynamic simulations.


Assuntos
Quitosana , Poluentes Químicos da Água , Quitosana/química , Corantes/química , Bentonita/química , Epicloroidrina/química , Simulação de Dinâmica Molecular , Cinética , Termodinâmica , Adsorção , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
2.
Int J Biol Macromol ; 243: 124894, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196720

RESUMO

Preparation of microspheres containing Mesalazine referred to as 5-aminosalicylic acid (5-ASA) for colon targeting drug was carried out using the emulsion solvent evaporation technique. The formulation was based on 5-ASA as the active agent, sodium Alginate (SA) andEthylcellulose (EC) as encapsulating agents, with polyvinyl alcohol (PVA) as emulsifier. The effects ofthe following processing parameters, 5-ASA %, EC:SA ratio and stirring rate on the properties of the resulting products in the form microspheres were considered. The samples were characterized using Optical microscopy, SEM, PXRD, FTIR, TGA, and DTG. In vitro release of 5-ASA from the different batches of microspheres was tested in biologically simulated fluids, (gastric; SGF, pH 1.2 for 2 h), then (intestinal fluid SIF, pH 7.4for 12 h) at 37 °C. The release kinetic results have been treated mathematically relaying on Higuchi's and Korsmeyer-Peppas' models for drug liberation. DOE study was performed to evaluate the interactive effects of variables on the drug entrapment and microparticle sizes. Molecular chemical interactions in structures were optimized using DFT analysis.


Assuntos
Celulose , Mesalamina , Liberação Controlada de Fármacos , Celulose/química , Preparações de Ação Retardada/química , Microesferas , Alginatos , Solventes , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Composição de Medicamentos/métodos
3.
Environ Sci Pollut Res Int ; 29(19): 28098-28114, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34984623

RESUMO

Understanding the graphene/semiconductor/metal interactions is crucial to design innovative photocatalytic materials with efficient photocatalytic activity for environmental cleanup applications. SrTiO3 on reduced graphene oxide (rGO) with various graphene contents was successfully synthesized in this study utilizing a simple hydrothermal method, followed by decorating the surface with Ag particles by using the photodeposition process. Under UV-visible light irradiation, the resulting composites were tested for their improved photocatalytic activity to decompose methylene blue (MB). The prepared photocatalysts were characterized by XRD, SEM, EDX, DLS, FT-IR, Raman spectroscopy, and DRS. First-principle density functional theory calculations (DFT) were also carried out by using the generalized gradient approximation (GGA) and PBE functional with the addition of on-site Coulomb correction (GGA + U). The obtained SrTiO3/rGO@Ag composites showed great improvement in the photocatalytic performances over pristine SrTiO3. For the degradation reaction of MB, SrTiO3/rGO20%@Ag4% composites yielded the best photocatalytic activity with efficacy reach 94%, which was also shown that it could be recycled up to four times with nearly unchanged photocatalytic activity.

4.
Environ Sci Pollut Res Int ; 28(7): 8507-8519, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33067784

RESUMO

The design of high-efficiency materials is a major challenge for the degradation of organic pollutants. In this work, type II p-n heterojunction photocatalyst Fe2TiO5/rGO, with enhanced performance, was successfully prepared through simple process. The Fe2TiO5/rGO composites were prepared by hosting several amounts of reduced graphene oxide (rGO) into pseudobrookite nanocrystals (Fe2TiO5) which were priorly synthesized by a solid-state reaction. The morphology and the properties of the as-prepared composites were characterized through different techniques. The fixation of rGO sheets on Fe2TiO5 was proved using the X-ray diffraction analysis (XRD). The results of the scanning electron microscope (SEM) analysis showed a good mixing of rGO with Fe2TiO5. The X-ray fluorescence (XRF) confirmed the purity of the pristine Fe2TiO5. The dynamic light scattering (DLS) illustrated a strong tendency to aggregation. Ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) analysis was performed to characterize the electronic aspect as the gap and the Urbach energies. Finally, computational density functional theory (DFT) calculations were carried out to confirm the experimental results. The adsorptive and photoactivity of Fe2TiO5/rGO heterojunction photocatalysts were evaluated by methylene blue (MB) degradation under visible light irradiation. The highest MB degradation rate was achieved for Fe2TiO5/rGO10% photocatalyst with the highest value of the elimination rate.


Assuntos
Grafite , Adsorção , Catálise , Luz
5.
Inorg Chem ; 53(2): 1184-94, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24400974

RESUMO

A series of new hybrid multilayers has been synthesized by insertion-grafting of transition metal (Cu(II), Co(II), Ni(II), and Zn(II)) tetrasulfonato phthalocyanines between layers of Cu(II) and Co(II) simple hydroxides. The structural and spectroscopic investigations confirm the formation of new layered hybrid materials in which the phthalocyanines act as pillars between the inorganic layers. The magnetic investigations show that all copper hydroxide-based compounds behave similarly, presenting an overall antiferromagnetic behavior with no ordering down to 1.8 K. On the contrary, the cobalt hydroxide-based compounds present a ferrimagnetic ordering around 6 K, regardless of the nature of the metal phthalocyanine between the inorganic layers. The latter observation points to strictly dipolar interactions between the inorganic layers. The amplitude of the dipolar field has been evaluated from X-band and Q-band EPR spectroscopy investigation (Bdipolar ≈ 30 mT).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...