Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regen Eng Transl Med ; 9(3): 424-430, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38031558

RESUMO

Purpose: This study demonstrated in vivo delivery of a decellularized, injectable peripheral nerve (iPN) hydrogel and explored options for using iPN in combination with regenerative biomolecular therapies like stem cell secretome. Methods: Rat-derived iPN hydrogel solutions were combined with a dextran-dye before subcutaneous injection into adult Sprague Dawley rats. After injection, an in vivo imaging system (IVIS) was used to visualize hydrogels and quantify dextran-dye release over time. Poly(lactic-co-glycolic) acid (PLGA) was used to encapsulate the dextran-dye to prolong molecular release from the hydrogel scaffolds. Lastly, we investigated use of adipose-derived stem cell (ASC) secretome as a potential future combination strategy with iPN. ASC secretome was assessed for growth factor levels in response to media stimulation and was encapsulated in PLGA to determine loading efficiency. Results: Gelation of iPN hydrogels was successful upon subcutaneous injection. When combined with iPN, a 10 kDa dextran-dye was reduced to 54% its initial signal at 24 hours, while PLGA-encapsulated dextran-dye in iPN was only reduced to 78% by 24 hours. Modified media stimulation resulted in changes in ASC phenotype and dramatic upregulation of VEGF secretion. The PLGA encapsulation protocol was adapted for use with temperature sensitive biomolecules, however, considerations must be made with loading efficiency for cell secretome as the maximum efficiency was 28%. Conclusion: The results of this study demonstrated successful injection and subsequent gelation of our iPN hydrogel formulation in vivo. Biomolecular payloads can be encapsulated in PLGA to help prolong their release from the soft iPN hydrogels in future combination therapies. Lay Summary: We developed an injectable decellularized tissue scaffold from rat peripheral nerve tissue (called iPN), a potential minimally invasive therapeutic meant to fill lesion spaces after injury. This study was the first demonstration of iPN delivery to a living animal. The iPN solution was injected subcutaneously in a rat and properly formed a gelled material upon entering the body. Our results showed that encapsulating biomolecules in an FDA-approved polymer (PLGA) slowed the release of biomolecules from the iPN, which could allow therapeutics more time around the scaffold to help repair native tissue. Lastly, we investigated one potential avenue for combining iPN with other regenerative cues obtained from adipose-derived stem cells. Description of Future Works: Future work must focus on optimal loading conditions and release profiles from the iPN hydrogels. Next steps will be applying iPN in various combination therapies for spinal cord injury. We will focus efforts on developing a pro-regenerative secretome that directly promotes neurite extension and neural cell infiltration into iPN scaffolds upon transplantation in spinal cord.

2.
J Biomed Mater Res A ; 110(3): 595-611, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34590403

RESUMO

Damage to the nervous system can result in loss of sensory and motor function, paralysis, or even death. To facilitate neural regeneration and functional recovery, researchers have employed biomaterials strategies to address both peripheral and central nervous system injuries. Injectable hydrogels that recapitulate native nerve extracellular matrix are especially promising for neural tissue engineering because they offer more flexibility for minimally invasive applications and provide a growth-permissive substrate for neural cell types. Here, we explore the development of injectable hydrogels derived from decellularized rat peripheral nerves (referred to as "injectable peripheral nerve [iPN] hydrogels"), which are processed using a newly developed sodium deoxycholate and DNase (SDD) decellularization method. We assess the gelation kinetics, mechanical properties, cell bioactivity, and drug release kinetics of the iPN hydrogels. The iPN hydrogels thermally gel when exposed to 37°C in under 20 min and have mechanical properties similar to neural tissue. The hydrogels demonstrate in vitro biocompatibility through support of Schwann cell viability and metabolic activity. Additionally, iPN hydrogels promote greater astrocyte spreading compared to collagen I hydrogels. Finally, the iPN is a promising delivery vehicle of drug-loaded microparticles for a combinatorial approach to neural injury therapies.


Assuntos
Hidrogéis , Engenharia Tecidual , Animais , Materiais Biocompatíveis/química , Matriz Extracelular/química , Hidrogéis/química , Hidrogéis/farmacologia , Nervos Periféricos , Ratos , Engenharia Tecidual/métodos
3.
Ann Biomed Eng ; 49(12): 3401-3411, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34704163

RESUMO

Exogenous electrical fields have been explored in regenerative medicine to increase cellular expression of pro-regenerative growth factors. Adipose-derived stem cells (ASCs) are attractive for regenerative applications, specifically for neural repair. Little is known about the relationship between low-level electrical stimulation (ES) and ASC regenerative potentiation. In this work, patterns of ASC expression and secretion of growth factors (i.e., secretome) were explored across a range of ES parameters. ASCs were stimulated with low-level stimulation (20 mV/mm) at varied pulse frequencies, durations, and with alternating versus direct current. Frequency and duration had the most significant effects on growth factor expression. While a range of stimulation frequencies (1, 20, 1000 Hz) applied intermittently (1 h × 3 days) induced upregulation of general wound healing factors, neural-specific factors were only increased at 1 Hz. Moreover, the most optimal expression of neural growth factors was achieved when ASCs were exposed to 1 Hz pulses continuously for 24 h. In evaluation of secretome, apparent inconsistencies were observed across biological replications. Nonetheless, ASC secretome (from 1 Hz, 24 h ES) caused significant increase in neurite extension compared to non-stimulated control. Overall, ASCs are sensitive to ES parameters at low field strengths, notably pulse frequency and stimulation duration.


Assuntos
Adipócitos/citologia , Estimulação Elétrica , Células-Tronco/efeitos da radiação , Adipócitos/metabolismo , Células Cultivadas , Estimulação Elétrica/métodos , Humanos , Fatores de Crescimento Neural/metabolismo , Neuritos/metabolismo , Secretoma/metabolismo , Células-Tronco/metabolismo
4.
Front Cardiovasc Med ; 7: 93, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32548129

RESUMO

Congenital heart disease (CHD) affects almost one percent of all live births. Despite diagnostic and surgical reparative advances, the causes and mechanisms of CHD are still primarily unknown. The extracellular matrix plays a large role in cell communication, function, and differentiation, and therefore likely plays a role in disease development and pathophysiology. Cell adhesion and gap junction proteins, such as integrins and connexins, are also essential to cellular communication and behavior, and could interact directly (integrins) or indirectly (connexins) with the extracellular matrix. In this work, we explore disparities in the expression and spatial patterning of extracellular matrix, adhesion, and gap junction proteins between wild type and Nkx2-5 +/R52G mutant mice. Decellularization and proteomic analysis, Western blotting, histology, immunostaining, and mechanical assessment of embryonic and neonatal wild type and Nkx2-5 mutant mouse hearts were performed. An increased abundance of collagen IV, fibronectin, and integrin ß-1 was found in Nkx2-5 mutant neonatal mouse hearts, as well as increased expression of connexin 43 in embryonic mutant hearts. Furthermore, a ventricular noncompaction phenotype was observed in both embryonic and neonatal mutant hearts, as well as spatial disorganization of ECM proteins collagen IV and laminin in mutant hearts. Characterizing such properties in a mutant mouse model provides valuable information that can be applied to better understanding the mechanisms of congenital heart disease.

5.
Acta Biomater ; 111: 1-19, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32464269

RESUMO

Biomedical engineers are at the forefront of developing novel treatments to improve human health, however, many products fail to translate to clinical implementation. In vivo pre-clinical animal models, although the current best approximation of complex disease conditions, are limited by reproducibility, ethical concerns, and poor accurate prediction of human response. Hence, there is a need to develop physiologically relevant, low cost, scalable, and reproducible in vitro platforms to provide reliable means for testing drugs, biomaterials, and tissue engineered products for successful clinical translation. One emerging approach of developing physiologically relevant in vitro models utilizes decellularized tissues/organs as biomaterial platforms for 2D and 3D models of healthy and diseased tissue. Decellularization is a process that removes cellular content and produces tissue-specific extracellular matrix scaffolds that can more accurately recapitulate an organ/tissue's native microenvironment compared to other natural or synthetic materials. Decellularized tissues hold enormous potential for in vitro modeling of various disease phenotypes and tissue responses to drugs or external conditions such as aging, toxin exposure, or even implantation. In this review, we highlight the need for in vitro models, the advantages and limitations of implementing decellularized tissues, and considerations of the decellularization process. We discuss current research efforts towards applying decellularized tissues as platforms to generate in vitro models of healthy and diseased tissues, and where we foresee the field progressing. A variety of organs/tissues are discussed, including brain, heart, kidney, large intestine, liver, lung, skeletal muscle, skin, and tongue. STATEMENT OF SIGNIFICANCE: Many biomedical products fail to reach clinical translation due to animal model limitations. Development of physiologically relevant in vitro models can provide a more economic, scalable, and reproducible means of testing drugs/therapeutics for successful clinical translation. The use of decellularized tissues as platforms for in vitro models holds promise, as these scaffolds can effectively replicate native tissue complexity, but is not widely explored. This review discusses the need for in vitro models, the promise of decellularized tissues as biomaterial substrates, and the current research applying decellularized tissues towards the creation of in vitro models. Further, this review provides insights into the current limitations and future of such in vitro models.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Matriz Extracelular , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...