Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
HGG Adv ; 5(2): 100271, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38297831

RESUMO

It is only partially understood how constitutive allelic methylation at imprinting control regions (ICRs) interacts with other regulation levels to drive timely parental allele-specific expression along large imprinted domains. The Peg13-Kcnk9 domain is an imprinted domain with important brain functions. To gain insights into its regulation during neural commitment, we performed an integrative analysis of its allele-specific epigenetic, transcriptomic, and cis-spatial organization using a mouse stem cell-based corticogenesis model that recapitulates the control of imprinted gene expression during neurodevelopment. We found that, despite an allelic higher-order chromatin structure associated with the paternally CTCF-bound Peg13 ICR, enhancer-Kcnk9 promoter contacts occurred on both alleles, although they were productive only on the maternal allele. This observation challenges the canonical model in which CTCF binding isolates the enhancer and its target gene on either side and suggests a more nuanced role for allelic CTCF binding at some ICRs.


Assuntos
Metilação de DNA , Impressão Genômica , Alelos , Metilação de DNA/genética , Impressão Genômica/genética , Regiões Promotoras Genéticas/genética , Animais , Camundongos
2.
Front Genet ; 14: 1147222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214422

RESUMO

MicroRNAs are small non-coding RNAs that control gene expression during development, physiology, and disease. Transcription is a key factor in microRNA abundance and tissue-specific expression. Many databases predict the location of microRNA transcription start sites and promoters. However, these candidate regions require functional validation. Here, dCas9 fused to transcriptional activators or repressors - CRISPR activation (CRISPRa) and inhibition (CRISPRi)- were targeted to the candidate promoters of two intronic microRNAs, mmu-miR-335 and hsa-miR-3662, including the promoters of their respective host genes Mest and HBS1L. We report that in mouse embryonic stem cells and brain organoids, miR-335 was downregulated upon CRISPRi of its host gene Mest. Reciprocally, CRISPRa of Mest promoter upregulated miR-335. By contrast, CRISPRa of the predicted miR-335-specific promoter (located in an intron of Mest) did not affect miR-335 levels. Thus, the expression of miR-335 only depends on the promoter activity of its host gene Mest. By contrast, miR-3662 was CRISPR activatable both by the promoter of its host gene HBS1L and an intronic sequence in HEK-293T cells. Thus, CRISPRa and CRISPRi are powerful tools to evaluate the relevance of endogenous regulatory sequences involved in microRNA transcription in defined cell types.

3.
Cells ; 12(3)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36766768

RESUMO

The serotonin (5-HT)6 receptor still raises particular interest given its unique spatio-temporal pattern of expression among the serotonin receptor subtypes. It is the only serotonin receptor specifically expressed in the central nervous system, where it is detected very early in embryonic life and modulates key neurodevelopmental processes, from neuronal migration to brain circuit refinement. Its predominant localization in the primary cilium of neurons and astrocytes is also unique among the serotonin receptor subtypes. Consistent with the high expression levels of the 5-HT6 receptor in brain regions involved in the control of cognitive processes, it is now well-established that the pharmacological inhibition of the receptor induces pro-cognitive effects in several paradigms of cognitive impairment in rodents, including models of neurodevelopmental psychiatric disorders and neurodegenerative diseases. The 5-HT6 receptor can engage several signaling pathways in addition to the canonical Gs signaling, but there is still uncertainty surrounding the signaling pathways that underly its modulation of cognition, as well as how the receptor's coupling is dependent on its cellular compartmentation. Here, we describe recent findings showing how the proper subcellular localization of the receptor is achieved, how this peculiar localization determines signaling pathways engaged by the receptor, and their pathophysiological influence.


Assuntos
Receptores de Serotonina , Serotonina , Serotonina/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo
4.
Neurobiol Dis ; 176: 105949, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496200

RESUMO

The serotonin 5-HT6 receptor (5-HT6R) is a promising target to improve cognitive symptoms of psychiatric diseases of neurodevelopmental origin, such as autism spectrum disorders and schizophrenia. However, its expression and localization at different stages of brain development remain largely unknown, due to the lack of specific antibodies to detect endogenous 5-HT6R. Here, we used transgenic mice expressing a GFP-tagged 5-HT6R under the control of its endogenous promoter (Knock-in) as well as embryonic stem cells expressing the GFP-tagged receptor to extensively characterize its expression at cellular and subcellular levels during development. We show that the receptor is already expressed at E13.5 in the cortex, the striatum, the ventricular zone, and to a lesser extent the subventricular zone. In adulthood, it is preferentially found in projection neurons of the hippocampus and cerebral cortex, in striatal medium-sized spiny neurons, as well as in a large proportion of astrocytes, while it is expressed in a minor population of interneurons. Whereas the receptor is almost exclusively detected in the primary cilia of neurons at embryonic and adult stages and in differentiated stem cells, it is located in the somatodendritic compartment of neurons from some brain regions at the neonatal stage and in the soma of undifferentiated stem cells. Finally, knocking-out the receptor induces a shortening of the primary cilium, suggesting that it plays a role in its function. This study provides the first global picture of 5-HT6R expression pattern in the mouse brain at different developmental stages. It reveals dynamic changes in receptor localization in neurons at the neonatal stage, which might underlie its key role in neuronal differentiation and psychiatric disorders of neurodevelopmental origin.


Assuntos
Neurônios , Serotonina , Camundongos , Animais , Serotonina/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Camundongos Transgênicos
5.
Cell Mol Life Sci ; 78(2): 757-768, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32405722

RESUMO

The acquisition of cell identity is associated with developmentally regulated changes in the cellular histone methylation signatures. For instance, commitment to neural differentiation relies on the tightly controlled gain or loss of H3K27me3, a hallmark of polycomb-mediated transcriptional gene silencing, at specific gene sets. The KDM6B demethylase, which removes H3K27me3 marks at defined promoters and enhancers, is a key factor in neurogenesis. Therefore, to better understand the epigenetic regulation of neural fate acquisition, it is important to determine how Kdm6b expression is regulated. Here, we investigated the molecular mechanisms involved in the induction of Kdm6b expression upon neural commitment of mouse embryonic stem cells. We found that the increase in Kdm6b expression is linked to a rearrangement between two 3D configurations defined by the promoter contact with two different regions in the Kdm6b locus. This is associated with changes in 5-hydroxymethylcytosine (5hmC) levels at these two regions, and requires a functional ten-eleven-translocation (TET) 3 protein. Altogether, our data support a model whereby Kdm6b induction upon neural commitment relies on an intronic enhancer the activity of which is defined by its TET3-mediated 5-hmC level. This original observation reveals an unexpected interplay between the 5-hmC and H3K27me3 pathways during neural lineage commitment in mammals. It also questions to which extent KDM6B-mediated changes in H3K27me3 level account for the TET-mediated effects on gene expression.


Assuntos
Dioxigenases/metabolismo , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Histona Desmetilases com o Domínio Jumonji/genética , Neurogênese , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Células Cultivadas , Dioxigenases/genética , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Regulação para Cima
6.
Epigenomes ; 4(3)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34968292

RESUMO

Imprinted genes are a group of ~150 genes that are preferentially expressed from one parental allele owing to epigenetic marks asymmetrically distributed on inherited maternal and paternal chromosomes. Altered imprinted gene expression causes human brain disorders such as Prader-Willi and Angelman syndromes and additional rare brain diseases. Research data principally obtained from the mouse model revealed how imprinted genes act in the normal and pathological brain. However, a better understanding of imprinted gene functions calls for building detailed maps of their parent-of-origin-dependent expression and of associated epigenetic signatures. Here we review current methods for quantifying genomic imprinting at tissue and cell resolutions, with a special emphasis on methods to detect parent-of-origin dependent expression and their applications to the brain. We first focus on bulk RNA-sequencing, the main method to detect parent-of-origin-dependent expression transcriptome-wide. We discuss the benefits and caveats of bulk RNA-sequencing and provide a guideline to use it on F1 hybrid mice. We then review methods for detecting parent-of-origin-dependent expression at cell resolution, including single-cell RNA-seq, genetic reporters, and molecular probes. Finally, we provide an overview of single-cell epigenomics technologies that profile additional features of genomic imprinting, including DNA methylation, histone modifications and chromatin conformation and their combination into sc-multimodal omics approaches, which are expected to yield important insights into genomic imprinting in individual brain cells.

7.
Bioinformatics ; 36(2): 504-513, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31350542

RESUMO

MOTIVATION: Allelic imbalance (AI), i.e. the unequal expression of the alleles of the same gene in a single cell, affects a subset of genes in diploid organisms. One prominent example of AI is parental genomic imprinting, which results in parent-of-origin-dependent, mono-allelic expression of a limited number of genes in metatherian and eutherian mammals and in angiosperms. Currently available methods for identifying AI rely on data modeling and come with the associated limitations. RESULTS: We have designed ISoLDE (Integrative Statistics of alleLe Dependent Expression), a novel nonparametric statistical method that takes into account both AI and the characteristics of RNA-seq data to infer allelic expression bias when at least two biological replicates are available for reciprocal crosses. ISoLDE learns the distribution of a specific test statistic from the data and calls genes 'allelically imbalanced', 'bi-allelically expressed' or 'undetermined'. Depending on the number of replicates, predefined thresholds or permutations are used to make calls. We benchmarked ISoLDE against published methods, and showed that ISoLDE compared favorably with respect to sensitivity, specificity and robustness to the number of replicates. Using ISoLDE on different RNA-seq datasets generated from hybrid mouse tissues, we did not discover novel imprinted genes (IGs), confirming the most conservative estimations of IG number. AVAILABILITY AND IMPLEMENTATION: ISoLDE has been implemented as a Bioconductor package available at http://bioconductor.org/packages/ISoLDE/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Desequilíbrio Alélico , Impressão Genômica , Alelos , Animais , Genômica , Camundongos , Análise de Sequência de RNA
8.
Neurobiol Dis ; 129: 13-28, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31051234

RESUMO

Finding new targets to control or reduce seizure activity is essential to improve the management of epileptic patients. We hypothesized that activation of the pre-synaptic and inhibitory metabotropic glutamate receptor type 7 (mGlu7) reduces spontaneous seizures. We tested LSP2-9166, a recently developed mGlu7/4 agonist with unprecedented potency on mGlu7 receptors, in two paradigms of epileptogenesis. In a model of chemically induced epileptogenesis (pentylenetetrazole systemic injection), LSP2-9166 induces an anti-epileptogenic effect rarely observed in preclinical studies. In particular, we found a bidirectional modulation of seizure progression by mGlu4 and mGlu7 receptors, the latter preventing kindling. In the intra-hippocampal injection of kainic acid mouse model that mimics the human mesial temporal lobe epilepsy, we found that LSP2-9166 reduces seizure frequency and hippocampal sclerosis. LSP2-9166 also acts as an anti-seizure drug on established seizures in both models tested. Specific modulation of the mGlu7 receptor could represent a novel approach to reduce pathological network remodeling.


Assuntos
Aminobutiratos/farmacologia , Anticonvulsivantes/farmacologia , Hipocampo/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/agonistas , Convulsões/metabolismo , Animais , Epilepsia/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/metabolismo , Excitação Neurológica/efeitos dos fármacos , Camundongos , Camundongos Mutantes
9.
Stem Cells Dev ; 28(6): 361-369, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30661489

RESUMO

Organoids and cells generated in vitro from pluripotent stem cells (PSCs) are considered to be robust models of development and a conceivable source of transplants for putative cell therapy. However, a fundamental question about organoids and cells generated from PSCs is as follows: do they faithfully reproduce the in vivo tissue they are supposed to mimic and replace? This question is particularly relevant to complex tissues such as the cerebral cortex. In this review, we have tackled this issue by comparing cerebral cortices generated in vitro from PSCs to the in vivo cortex, with a particular focus on their respective cellular composition, molecular and epigenetic signatures, and brain connectivity. In short, in vitro cortex generated from PSCs reproduces most of the cardinal features of the in vivo cortex, including temporal corticogenesis and connectivity when PSC-derived cortical cells are grafted in recipient mouse cortex. However, compared to in vivo cortex, in vitro cortex lacks microglia and blood vessels and is less mature. Recent experiments show that the brain of the transplanted host provides these missing cell types together with an environment that promotes the synaptic maturation of the cortical transplant. Taken together, these data suggest that corticogenesis is largely intrinsic and well recapitulated in vitro, while the full maturation of cortical cells requires additional environmental clues. Finally, we propose some lines of work to improve corticogenesis from PSCs as a tool to model corticogenesis and rebuild cortical circuits.


Assuntos
Diferenciação Celular , Córtex Cerebral/metabolismo , Organogênese , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Córtex Cerebral/citologia , Humanos , Camundongos , Organoides/citologia , Células-Tronco Pluripotentes/citologia
10.
Genome Res ; 28(11): 1733-1746, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30287550

RESUMO

The mammalian cell nucleus contains numerous discrete suborganelles named nuclear bodies. While recruitment of specific genomic regions into these large ribonucleoprotein (RNP) complexes critically contributes to higher-order functional chromatin organization, such regions remain ill-defined. We have developed the high-salt-recovered sequences-sequencing (HRS-seq) method, a straightforward genome-wide approach whereby we isolated and sequenced genomic regions associated with large high-salt insoluble RNP complexes. By using mouse embryonic stem cells (ESCs), we showed that these regions essentially correspond to the most highly expressed genes, and to cis-regulatory sequences like super-enhancers, that belong to the active A chromosomal compartment. They include both cell-type-specific genes, such as pluripotency genes in ESCs, and housekeeping genes associated with nuclear bodies, such as histone and snRNA genes that are central components of Histone Locus Bodies and Cajal bodies. We conclude that HRSs are associated with the active chromosomal compartment and with large RNP complexes including nuclear bodies. Association of such chromosomal regions with nuclear bodies is in agreement with the recently proposed phase separation model for transcription control and might thus play a central role in organizing the active chromosomal compartment in mammals.


Assuntos
Cromossomos/química , Ribonucleoproteínas/química , Animais , Células Cultivadas , Fracionamento Químico/métodos , Cromossomos/metabolismo , Células-Tronco Embrionárias/metabolismo , Camundongos , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico , Ribonucleoproteínas/metabolismo , Salinidade
11.
Stem Cells ; 36(2): 192-205, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29044892

RESUMO

One strategy for stem cell-based therapy of the cerebral cortex involves the generation and transplantation of functional, histocompatible cortical-like neurons from embryonic stem cells (ESCs). Diploid parthenogenetic Pg-ESCs have recently emerged as a promising source of histocompatible ESC derivatives for organ regeneration but their utility for cerebral cortex therapy is unknown. A major concern with Pg-ESCs is genomic imprinting. In contrast with biparental Bp-ESCs derived from fertilized oocytes, Pg-ESCs harbor two maternal genomes but no sperm-derived genome. Pg-ESCs are therefore expected to have aberrant expression levels of maternally expressed (MEGs) and paternally expressed (PEGs) imprinted genes. Given the roles of imprinted genes in brain development, tissue homeostasis and cancer, their deregulation in Pg-ESCs might be incompatible with therapy. Here, we report that, unexpectedly, only one gene out of 7 MEGs and 12 PEGs was differentially expressed between Pg-ESCs and Bp-ESCs while 13 were differentially expressed between androgenetic Ag-ESCs and Bp-ESCs, indicating that Pg-ESCs but not Ag-ESCs, have a Bp-like imprinting compatible with therapy. In vitro, Pg-ESCs generated cortical-like progenitors and electrophysiologically active glutamatergic neurons that maintained the Bp-like expression levels for most imprinted genes. In vivo, Pg-ESCs participated to the cortical lineage in fetal chimeras. Finally, transplanted Pg-ESC derivatives integrated into the injured adult cortex and sent axonal projections in the host brain. In conclusion, mouse Pg-ESCs generate functional cortical-like neurons with Bp-like imprinting and their derivatives properly integrate into both the embryonic cortex and the injured adult cortex. Collectively, our data support the utility of Pg-ESCs for cortical therapy. Stem Cells 2018;36:192-205.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Animais , Metilação de DNA/genética , Metilação de DNA/fisiologia , Eletrofisiologia , Impressão Genômica/genética , Impressão Genômica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Partenogênese/genética , Partenogênese/fisiologia
12.
Nucleic Acids Res ; 45(18): 10466-10480, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28985358

RESUMO

PLAGL1/ZAC1 undergoes parental genomic imprinting, is paternally expressed, and is a member of the imprinted gene network (IGN). It encodes a zinc finger transcription factor with anti-proliferative activity and is a candidate tumor suppressor gene on 6q24 whose expression is frequently lost in various neoplasms. Conversely, gain of PLAGL1 function is responsible for transient neonatal diabetes mellitus, a rare genetic disease that results from defective pancreas development. In the present work, we showed that Plagl1 up-regulation was not associated with DNA damage-induced cell cycle arrest. It was rather associated with physiological cell cycle exit that occurred with contact inhibition, growth factor withdrawal, or cell differentiation. To gain insights into Plagl1 mechanism of action, we identified Plagl1 target genes by combining chromatin immunoprecipitation and genome-wide transcriptomics in transfected cell lines. Plagl1-elicited gene regulation correlated with multiple binding to the proximal promoter region through a GC-rich motif. Plagl1 target genes included numerous genes involved in signaling, cell adhesion, and extracellular matrix composition, including collagens. Plagl1 targets also included 22% of the 409 genes that make up the IGN. Altogether, this work identified Plagl1 as a transcription factor that coordinated the regulation of a subset of IGN genes and controlled extracellular matrix composition.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Impressão Genômica , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Animais Recém-Nascidos , Sítios de Ligação , Células Cultivadas , Embrião de Mamíferos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica
13.
Cereb Cortex ; 27(3): 2418-2433, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27095822

RESUMO

In vitro corticogenesis from embryonic stem cells (ESCs) is an attractive model of cortical development and a promising tool for cortical therapy. It is unknown to which extent epigenetic mechanisms crucial for cortex development and function, such as parental genomic imprinting, are recapitulated by in vitro corticogenesis. Here, using genome-wide transcriptomic and methylation analyses on hybrid mouse tissues and cells, we find a high concordance of imprinting status between in vivo and ESC-derived cortices. Notably, in vitro corticogenesis strictly reproduced the in vivo parent-of-origin-dependent expression of 41 imprinted genes (IGs), including Mest and Cdkn1c known to control corticogenesis. Parent-of-origin-dependent DNA methylation was also conserved at 14 of 18 imprinted differentially methylated regions. The least concordant imprinted locus was Gpr1-Zdbf2, where the aberrant bi-allelic expression of Zdbf2 and Adam23 was concomitant with a gain of methylation on the maternal allele in vitro. Combined, our data argue for a broad conservation of the epigenetic mechanisms at imprinted loci in cortical cells derived from ESCs. We propose that in vitro corticogenesis helps to define the still poorly understood mechanisms that regulate imprinting in the brain and the roles of IGs in cortical development.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Células-Tronco Embrionárias/metabolismo , Impressão Genômica , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Metilação de DNA , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Camundongos , Microscopia de Fluorescência , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neuroglia/metabolismo , Neurônios/metabolismo , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
14.
Genome Res ; 25(3): 353-67, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25614607

RESUMO

Genomic imprinting is an epigenetic mechanism that restrains the expression of ∼ 100 eutherian genes in a parent-of-origin-specific manner. The reason for this selective targeting of genes with seemingly disparate molecular functions is unclear. In the present work, we show that imprinted genes are coexpressed in a network that is regulated at the transition from proliferation to quiescence and differentiation during fibroblast cell cycle withdrawal, adipogenesis in vitro, and muscle regeneration in vivo. Imprinted gene regulation is not linked to alteration of DNA methylation or to perturbation of monoallelic, parent-of-origin-dependent expression. Overexpression and knockdown of imprinted gene expression alters the sensitivity of preadipocytes to contact inhibition and adipogenic differentiation. In silico and in cellulo experiments showed that the imprinted gene network includes biallelically expressed, nonimprinted genes. These control the extracellular matrix composition, cell adhesion, cell junction, and extracellular matrix-activated and growth factor-activated signaling. These observations show that imprinted genes share a common biological process that may account for their seemingly diverse roles in embryonic development, obesity, diabetes, muscle physiology, and neoplasm.


Assuntos
Epigenômica/métodos , Impressão Genômica , Adipogenia/genética , Animais , Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular , Análise por Conglomerados , Biologia Computacional/métodos , Metilação de DNA , Bases de Dados de Ácidos Nucleicos , Matriz Extracelular/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos
15.
Dev Cell ; 31(1): 19-33, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25263792

RESUMO

Imprinted genes play essential roles in development, and their allelic expression is mediated by imprinting control regions (ICRs). The Dlk1-Dio3 locus is among the few imprinted domains controlled by a paternally methylated ICR. The unmethylated maternal copy activates imprinted expression early in development through an unknown mechanism. We find that in mouse embryonic stem cells (ESCs) and in blastocysts, this function is linked to maternal, bidirectional expression of noncoding RNAs (ncRNAs) from the ICR. Disruption of ICR ncRNA expression in ESCs affected gene expression in cis, led to acquisition of aberrant histone and DNA methylation, delayed replication timing along the domain on the maternal chromosome, and changed its subnuclear localization. The epigenetic alterations persisted during differentiation and affected the neurogenic potential of the stem cells. Our data indicate that monoallelic expression at an ICR of enhancer RNA-like ncRNAs controls imprinted gene expression, epigenetic maintenance processes, and DNA replication in embryonic cells.


Assuntos
Replicação do DNA , Impressão Genômica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Iodeto Peroxidase/genética , Região de Controle de Locus Gênico , RNA não Traduzido/genética , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Proteínas de Ligação ao Cálcio , Diferenciação Celular , Metilação de DNA , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Camundongos , RNA não Traduzido/metabolismo
16.
Nat Neurosci ; 15(12): 1627-35, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23160044

RESUMO

During neurogenesis, neural stem/progenitor cells (NPCs) undergo an irreversible fate transition to become neurons. The Notch pathway is important for this process, and repression of Notch-dependent Hes genes is essential for triggering differentiation. However, Notch signaling often remains active throughout neuronal differentiation, implying a change in the transcriptional responsiveness to Notch during the neurogenic transition. We identified Bcl6, an oncogene, as encoding a proneurogenic factor that is required for proper neurogenesis of the mouse cerebral cortex. BCL6 promoted the neurogenic conversion by switching the composition of Notch-dependent transcriptional complexes at the Hes5 promoter. BCL6 triggered exclusion of the co-activator Mastermind-like 1 and recruitment of the NAD(+)-dependent deacetylase Sirt1, which was required for BCL6-dependent neurogenesis. The resulting epigenetic silencing of Hes5 led to neuronal differentiation despite active Notch signaling. Our findings suggest a role for BCL6 in neurogenesis and uncover Notch-BCL6-Sirt1 interactions that may affect other aspects of physiology and disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diferenciação Celular , Proteínas de Ligação a DNA/fisiologia , Repressão Epigenética/fisiologia , Neurogênese/fisiologia , Receptores Notch/antagonistas & inibidores , Proteínas Repressoras/fisiologia , Sirtuína 1/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/fisiologia , Repressão Epigenética/genética , Feminino , Inativação Gênica , Marcação de Genes/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/genética , Gravidez , Transporte Proteico/genética , Proteínas Proto-Oncogênicas c-bcl-6 , Receptores Notch/genética , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Sirtuína 1/genética
17.
PLoS One ; 7(11): e48675, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23139813

RESUMO

Imprinting is an epigenetic mechanism that restrains the expression of about 100 genes to one allele depending on its parental origin. Several imprinted genes are implicated in neurodevelopmental brain disorders, such as autism, Angelman, and Prader-Willi syndromes. However, how expression of these imprinted genes is regulated during neural development is poorly understood. Here, using single and double KO animals for the transcription factors Neurogenin2 (Ngn2) and Achaete-scute homolog 1 (Ascl1), we found that the expression of a specific subset of imprinted genes is controlled by these proneural genes. Using in situ hybridization and quantitative PCR, we determined that five imprinted transcripts situated at the Dlk1-Gtl2 locus (Dlk1, Gtl2, Mirg, Rian, Rtl1) are upregulated in the dorsal telencephalon of Ngn2 KO mice. This suggests that Ngn2 influences the expression of the entire Dlk1-Gtl2 locus, independently of the parental origin of the transcripts. Interestingly 14 other imprinted genes situated at other imprinted loci were not affected by the loss of Ngn2. Finally, using Ngn2/Ascl1 double KO mice, we show that the upregulation of genes at the Dlk1-Gtl2 locus in Ngn2 KO animals requires a functional copy of Ascl1. Our data suggest a complex interplay between proneural genes in the developing forebrain that control the level of expression at the imprinted Dlk1-Gtl2 locus (but not of other imprinted genes). This raises the possibility that the transcripts of this selective locus participate in the biological effects of proneural genes in the developing telencephalon.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos/genética , Impressão Genômica/genética , Neurônios/metabolismo , Telencéfalo/embriologia , Telencéfalo/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação ao Cálcio , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Telencéfalo/citologia , Regulação para Cima/genética
18.
Adv Exp Med Biol ; 744: 39-48, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22434106

RESUMO

As mentioned earlier in this book, RAMPs were identified as proteins escorting the Calcitonin Receptor-Like Receptor (CRLR) to the plasma membrane (PM) to generate either CGRP (when associated with RAMP1), or adrenomedullin receptors (when associated with RAMP2 or RAMP3). Some years after this initial discovery, it was established that RAMPs can accompany four additional class B G Protein-Coupled Receptors-GPCRs- (PTH1, PTH2, glucagon receptor and VPAC1) to the PM.(1) By demonstrating that the sorting traffic of the Calcium Sensing Receptor (CaSR), a class C GPCR, is positively modulated by RAMP1 and RAMP3,(2) our data extended the concept of RAMPs as escorting molecules to another class of GPCRs.


Assuntos
Proteínas Modificadoras da Atividade de Receptores/fisiologia , Receptores de Detecção de Cálcio/metabolismo , Animais , Linhagem Celular , Humanos , Transporte Proteico
19.
Mol Neurobiol ; 44(1): 111-21, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21710140

RESUMO

The potassium channel tetramerization domain-containing protein 7 (KCTD7) was named after the structural homology of its predicted N-terminal broad complex, tramtrack and bric à brac/poxvirus and zinc finger domain with the T1 domain of the Kv potassium channel, but its expression profile and cellular function are still largely unknown. We have recently reported a homozygous nonsense mutation of KCTD7 in patients with a novel form of autosomal recessive progressive myoclonic epilepsy. Here, we show that KCTD7 expression hyperpolarizes the cell membrane and reduces the excitability of transfected neurons in patch clamp experiments. We found the expression of KCTD7 in the hippocampal and Purkinje cells of the murine brain, an expression profile consistent with our patients' phenotype. The effect on the plasma membrane resting potential is possibly mediated by Cullin-3, as we demonstrated direct molecular interaction of KCTD7 with Cullin-3 in co-immunoprecipitation assays. Our data link progressive myoclonic epilepsy to an inherited defect of the neuron plasma membrane's resting potential in the brain.


Assuntos
Ativação do Canal Iônico/genética , Epilepsias Mioclônicas Progressivas/genética , Neurônios/metabolismo , Canais de Potássio/genética , Potenciais de Ação/fisiologia , Animais , Especificidade de Anticorpos , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas Culina/metabolismo , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Imunoprecipitação , Camundongos , Neurônios/patologia , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Canais de Potássio/metabolismo , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Células de Purkinje/metabolismo , Células de Purkinje/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Nat Protoc ; 4(10): 1454-63, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19798080

RESUMO

Embryonic stem cells (ESCs) constitute a tool of great potential in neurobiology, enabling the directed differentiation of specific neural cell types. We have shown recently that neurons of the cerebral cortex can be generated from mouse ESCs cultured in a chemically defined medium that contains no morphogen, but in the presence of the sonic hedgehog inhibitor cyclopamine. Corticogenesis from ESCs recapitulates the most important steps of cortical development, leading to the generation of multipotent cortical progenitors that sequentially produce cortical pyramidal neurons displaying distinct layer-specific identities. The protocol provides a most reductionist cellular model to tackle the complex mechanisms of cortical development and function, thereby opening new perspectives for the modeling of cortical diseases and the design of novel neurological treatments, while offering an alternative to animal use. In this protocol, we describe a method by which millions of cortical neurons can be generated in 2-3 weeks, starting from a single frozen vial of ESCs.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Córtex Cerebral/citologia , Células-Tronco Embrionárias/citologia , Neurônios/citologia , Animais , Meios de Cultura , Imunofluorescência , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...