Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(16): 7197-7205, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38577870

RESUMO

Thin films with thicknesses in the range between ca. 10-50 nm of the spin crossover (SCO) compound {Fe(pyrazine)[µ4-M(CN)4]} (M = Ni, Pt) have been deposited on fused silica substrates using a sequential assembly method and 4-pyridinecarboxylic acid as anchoring layer. Film morphology and crystallinity were assessed by means of atomic force microscopy and grazing incidence X-ray diffraction, respectively. The intensity of the π-π* transition of the pyrazine ligand at 270 nm, being rather insensitive to the spin state of the complex, was used to follow the film growth as a function of different deposition parameters. On the other hand, the spin state changes were inferred from the temperature dependence of absorption bands appearing at 540, 490 and 310 nm in the low spin state. In line with their amorphous nature, each film displays a very gradual thermal spin crossover between ca. 100-300 K, independently of its thickness and deposition conditions. These results are not only interesting to better understand the effects of size reduction and organization on the SCO phenomenon, but the deposition of these SCO compounds on electrically insulating and/or optically transparent oxide surfaces opens also the door for various photonic or electronic applications.

2.
J Mater Chem C Mater ; 12(16): 5757-5765, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38680543

RESUMO

Acoustic emission from the compounds [Fe(HB(tz)3)2] and [Fe(Htrz)(trz)2]BF4 was detected during the thermally induced spin transition and is correlated with simultaneously recorded calorimetric signals. We ascribe this phenomenon to elastic waves produced by microstructural and volume changes accompanying the spin transition. Despite the perfect reversibility of the spin state switching (seen by the calorimeter), the acoustic emission activity decreases for successive thermal cycles, revealing thus irreversible microstructural evolution of the samples. The acoustic emission signal amplitude and energy probability distribution functions followed power-law behavior and the characteristic exponents were found to be similar for the two samples both on heating and cooling, indicating the universal character, which is further substantiated by the well scaled average temporal shapes of the avalanches.

3.
Nanoscale ; 16(14): 7237-7247, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38512078

RESUMO

Size-induced phase transformation at the nanoscale is a common phenomenon whose understanding is essential for potential applications. Here we investigate phase equilibria in thin films and nanoparticles of molecular spin crossover (SCO) materials. To calculate the size-temperature phase diagrams we have developed a new nano-thermodynamic core-shell model in which intermolecular interactions are described through the volume misfit between molecules of different spin states, while the contributions of surface energy and surface stress are explicitly included. Based on this model, we rationalize the emergence of previously-reported incomplete spin transitions and the shift of the transition temperature in finite size objects due to their large surface-to-volume ratio. The results reveal a competition between the elastic intermolecular interaction and the internal pressure induced by the surface stress. The predicted transition temperature of thin films of the SCO compound [Fe(pyrazine)][Ni(CN)4] follows a clear reciprocal relationship with respect to the film thickness and the transition behavior matches the available experimental data. Importantly, all input parameters of the present model are experimentally accessible physical quantities, thus providing a simple, yet powerful tool to analyze SCO properties in nano-scale objects.

4.
Dalton Trans ; 53(15): 6830-6838, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38546485

RESUMO

A series of mixed-anion Fe(NH2trz)3(BF4)2-x(SiF6)x/2 spin crossover complexes is obtained modifying the reaction time but also using an increase amount of tetraethyl orthosilicate as the source for the production and the incorporation of SiF62- competing with the BF42- anions present in the mother solution. The increase of the SiF62- anion inclusion to the detriment of the BF4- counterpart induces a shift of the temperature transition toward high temperatures leading to interesting bistability properties around room temperature with T1/2 spanning from 300 K to 325 K. Moreover, the implementation of a solid-liquid post synthetic modification approach from the Fe(NH2trz)3(BF4)2 parent complex with identical TEOS proportions and under certain experimental conditions lead systematically to the same Fe(NH2trz)3(BF4)1.2(SiF6)0.4 composition. This compound presents an abrupt spin crossover behaviour with a narrow hysteresis loop just above room temperature (320 K), which is stable under thermal cycling and along time with no specific storage conditions. Such crystalline powder sample incorporates homogeneous rod-shaped particles whose formation and physical properties can be followed simultaneously using infra-red spectroscopy, dynamic light scattering (DLS), transmission electronic microscopy (TEM) and optical reflectance. The observation of a stabilized single ca. 800 nm population of mixed-anion particles starting from insoluble various sizes (from nano- to microscale) Fe(NH2trz)3(BF4)2 particles supports the key role of the solvent (water molecules) on the separation, the reactivity and the reorganization of the 1D iron-triazole chains forming the packing of the structure.

5.
STAR Protoc ; 4(3): 102394, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392390

RESUMO

Spin crossover (SCO) complexes, through their reversible spin transition under external stimuli, can work as switchable memory materials. Here, we present a protocol for the synthesis and characterization of a specific polyanionic iron SCO complex and its diluted systems. We describe steps for its synthesis and the determination of crystallographic structure of the SCO complex in diluted systems. We then detail a range of spectroscopic and magnetic techniques employed to monitor the spin state of the SCO complex in both diluted solid- and liquid-state systems. For complete details on the use and execution of this protocol, please refer to Galán-Mascaros et al.1.


Assuntos
Compostos Ferrosos , Ferro
6.
Dalton Trans ; 52(31): 10828-10834, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37485867

RESUMO

A pure mixed-anion Fe(NH2trz)3(BF4)(SiF6)0.5 spin crossover complex is obtained implementing a solid-liquid post synthetic modification approach from the Fe(NH2trz)3(BF4)2 parent complex. This method allows obtaining highly crystalline powder samples incorporating homogeneous micrometric (1 µm long) rod-shaped particles. This compound presents an abrupt spin crossover behaviour with a narrow (10 K) hysteresis loop centred just above room temperature (320 K) which makes it very interesting for future integration into devices for various applications.

7.
J Phys Chem Lett ; 14(30): 6840-6849, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37487224

RESUMO

The formation of hybrid light-matter states through the resonant interaction of confined electromagnetic fields with matter excitations has emerged as a fascinating tool for controlling quantum-mechanical states and then manipulating the functionalities and chemical reactivity landscape of molecular materials. Here we report the first observation of switchable strong light-matter coupling involving bistable spin-crossover molecules. Spectroscopic measurements, supported by transfer-matrix and coupled-oscillator simulations, reveal Rabi splitting values of up to 550 meV, which at 15% of the molecular excitation energy enter the regime of ultrastrong coupling. We find that the thermally induced switching of molecules between their low-spin and high-spin states allows fine control of the light-matter hybridization strength, offering the appealing possibility of reversible switching between the ultrastrong- and weak-coupling regimes within a single photonic structure. Through this work, we show that spin-crossover molecular compounds constitute a promising class of active nanomaterials in the burgeoning context of tunable polaritonic devices and polaritonic chemistry.

8.
ACS Appl Mater Interfaces ; 14(46): 52140-52148, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36374998

RESUMO

We report on the fabrication, characterization, and microthermometry application of high-quality, nanometric thin films, with thicknesses in the range 20-200 nm, of the molecular spin-crossover complex [Fe(HB(1,2,3-triazol-1-yl)3)2]. The films were obtained by vacuum thermal evaporation and characterized by X-ray diffraction, UV spectrophotometry, and atomic force microscopy. The as-deposited films are dense and crystalline with a preferred [011] orientation of the monoclinic crystal lattice normal to the substrate surface. The films exhibit a gradual spin conversion centered at ca. 374 K spanning the 273-473 K temperature range, irrespective of their thickness. When deposited on a microelectronic device, these films can be used to enhance the UV-light thermoreflectance coefficient of reflective surfaces by more than an order of magnitude, allowing for high-sensitivity thermoreflectance thermal imaging.

9.
Inorg Chem ; 61(40): 15991-16002, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36162137

RESUMO

The large volume change, which accompanies the molecular spin crossover (SCO) phenomenon in some transition metal complexes, prompts frequently the coupling of the SCO with other instabilities. Understanding the driving mechanism(s) of such coupled phase transitions is not only important for fundamental reasons but also provides scope for the development of multifunctional materials. The general theoretical expectation is that the coupling has elastic origin, and the sequence of transitions can be tuned by an externally applied pressure, but dedicated experiments remain scarce. Here, we used high-pressure and low-temperature single-crystal X-ray diffraction to investigate the high-spin (HS) to low-spin (LS) transitions in the molecular complexes [FeII(H2B(pz)2)2(bipy)] and [FeII(H2B(pz)2)2(phen)]. In the bipyridine complex, the SCO is continuous and isostructural over the whole T, P-range (100-300 K, 0-2 GPa). In the phenanthroline derivative, however, the SCO is concomitant with a symmetry-breaking transition (C2/c to P1̅). Structural analysis reveals that the coupling between the two phenomena can be tuned by external pressure from a virtually simultaneous HSC2/c-LSP1̅ transition to the sequence of HSC2/c-LSC2/c-LSP1̅ transitions. The correlation of spontaneous strain and order parameter behaviors highlights that the "separated" transitions remain still connected via strain coupling, whereas the "simultaneous" transitions are partially split.

10.
Mater Adv ; 3(12): 5131-5137, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35812835

RESUMO

Polymer composites of molecular spin crossover complexes have emerged as promising mechanical actuator materials, but their effective thermomechanical properties remain elusive. In this work, we investigated a series of iron(ii)-triazole@P(VDF-TrFE) particulate composites using a tensile testing stage with temperature control. From these measurements, we assessed the temperature dependence of the Young's modulus as well as the free deformation and blocking stress, associated with the thermally-induced spin transition. The results denote that the expansion of the particles at the spin transition is effectively transferred to the macroscopic composite material, providing ca. 1-3% axial strain for 25% particle load. This strain is in excess of the 'neat' particle strain, which we attribute to particle-matrix mechanical coupling. On the other hand, the blocking stress (∼1 MPa) appears reduced by the softening of the composite around the spin transition temperature.

11.
Adv Mater ; 34(6): e2105468, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34817094

RESUMO

Molecular spin-crossover (SCO) compounds constitute a promising class of photoactive materials exhibiting efficient photoinduced phase transitions (PIPTs). Taking advantage of the unique, picture-perfect reproducibility of the spin-transition properties in the compound [Fe(HB(1,2,4-triazol-1-yl)3 )2 ], the spatiotemporal dynamics of the PIPT within the thermodynamic metastability (hysteretic) region of a single crystal is dissected, using pump-probe optical microscopy. Beyond a threshold laser-excitation density, complete PIPTs are evidenced, with conversion rates up to 200 switched molecules per absorbed photon. It is shown that the PIPT takes place through the sequential activation of two (molecular and macroscopic) switching mechanisms, occurring on sub-microsecond and millisecond timescales, governed by the intramolecular and free energy barriers of the system, respectively. The main finding here is that the thermodynamic metastability has strictly no influence on the sub-millisecond switching dynamics. Indeed, before this millisecond timescale, the response of the crystal to the laser excitation involves a gradual, molecular conversion process, as if there were no hysteresis loop. Consequently, in this regime, even a 100% photoinduced conversion may not give rise to a PIPT. These results provide new insight on the intrinsic dynamical limits of the PIPT, which is an important issue from a technological perspective.

12.
Nanomaterials (Basel) ; 11(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34947517

RESUMO

Spin crossover (SCO) iron (II) 1,2,4-triazole-based coordination compounds in the form of composite SCO@SiO2 nanoparticles were prepared using a reverse microemulsion technique. The thickness of the silica shell and the morphology of the as obtained core@shell nanoparticles were studied by modifying the polar phase/surfactant ratio (ω), as well as the quantity and the insertion phase (organic, aqueous and micellar phases) of the tetraethylorthosilicate (TEOS) precursor, the quantity of ammonia and the reaction temperature. The morphology of the nanoparticles was monitored by transmission electron microscopy (TEM/HRTEM) while their composition probed by combined elemental analyses, thermogravimetry and EDX analyses. We report that not only the particle size can be controlled but also the size of the silica shell, allowing for interesting perspectives in post-synthetic modification of the shell. The evolution of the spin crossover properties associated with the change in morphology was investigated by variable temperature optical and magnetic measurements.

13.
Mater Horiz ; 8(11): 3055-3062, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635900

RESUMO

Bilayer spin crossover (SCO)@polymer nanocomposites show robust and controllable actuation cycles upon an electrical stimulus. The anisotropic shape of the embedded particles as well as the mechanical coupling between the SCO particles and the matrix can substantially intensify the work output of the actuators.

14.
Dalton Trans ; 50(25): 8877-8888, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34100495

RESUMO

Three Hofmann-like metal-organic frameworks {Fe(bpac)[Pt(CN)4]}·G (bpac = 1,2-bis(4-pyridyl)acetylene) were synthesized with photoisomerizable guest molecules (G = trans-azobenzene, trans-stilbene or cis-stilbene) and were characterized by elemental analysis, thermogravimetry and powder X-ray diffraction. The insertion of guest molecules and their conformation were inferred from Raman and FTIR spectra and from single-crystal X-ray diffraction and confronted with computational simulation. The magnetic and photomagnetic behaviors of the framework are significantly altered by the different guest molecules and different conformations. On the other hand, photoisomerization of the guest molecules becomes strongly hindered by the framework.

15.
Inorg Chem ; 60(7): 4986-4995, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33709693

RESUMO

Activation of [FeCl(dppe)Cp] (1) by chloride abstraction with Na[BArX4] (X = F, [B(3,5-(CF3)2-C6H3)4]; X = Cl, [B(3,5-Cl2-C6H3)4]) permits reactions with a range of nitro aromatics, RC6H4NO2 (R = halogen, Me, OMe, NO2 or NMe2), to give the cationic iron nitroso complexes [Fe{N(O)-C6H4R}(dppe)Cp][BArX4]) ([3][BArX4]). Similar reactions of 1 and Na[BArX4] with [Fe(NCC6H4NO2)(dppe)Cp][BArX4] gave bimetallic [{Fe(dppe)Cp}2{µ-N≡CC6H4N(O)}][BArF4]2. However, reactions of 1 and Na[BArX4] with 4-nitrophenol gave the first example of the bench-stable iron half-sandwich phenolate complex [Fe(OC6H4NO2)(dppe)Cp]+ rather than NO2 activation. The formation of complexes [3]+ likely proceeds via the unusual blue bimetallic species [{Fe(dppe)Cp}2{µ,κ2O,O'-O2NAr}]2+. This compound undergoes N-O bond cleavage, resulting in [3]+ and a FeIV═O species, which reacts via an internal C-H activation of the dppe ligand to give [FeIII(κ3O,P,P'-P(2-O-C6H4)(Ph)-C2H4-PPh2)Cp]+. Complexes [3]+ are stable under ambient conditions, are readily purified by column chromatography and can be isolated in up to 50% yield, considering that 0.5 equiv of 1 is required as the oxygen acceptor.

16.
Antioxidants (Basel) ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430324

RESUMO

Pancreatic cancer is a usually fatal disease that needs innovative therapeutic approaches since the current treatments are poorly effective. In this study, based on cell lines, triazole-based coordination trimers made with soluble Fe(II) in an aqueous media were explored for the first time as adjuvant agents for the treatment of this condition. These coordination complexes were effective at relatively high concentrations and led to an increase in reactive oxygen species (ROS) in two pancreatic cancer cell lines, PANC-1 and BXPC-3, and this effect was accompanied by a significant reduction in cell viability in the presence of gemcitabine (GEM). Importantly, the tested compounds enhanced the effect of GEM, an approved drug for pancreatic cancer, through apoptosis induction and downregulation of the mTOR pathway. Although further evaluation in animal-based models of pancreatic cancer is needed, these results open novel avenues for exploring these iron-based materials in biomedicine in general and in pancreatic cancer treatment.

17.
Inorg Chem ; 59(24): 18402-18406, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33284611

RESUMO

Resistance switching properties of nanoscale junctions of spin crossover molecules have received recently much interest. In many cases, this property has been traced back to the variation of molecular orbital energies upon spin transition. However, one can also expect a substantial reorganization of the molecular structure due to charge localization, which calls for a better understanding of the relationship between the redox potential and the spin state of the molecule. To investigate this issue, we carried out a detailed density functional theory and variable temperature cyclic voltammetry investigation of the benchmark compound [Fe(HB(1,2,4-triazol-1-yl)3)2] in solution. We show that, for a correct thermodynamical picture, it is necessary to take into account the charge transfer-induced electronic and structural reorganization as well as spin equilibria in the oxidized and reduced species.

18.
Chem Commun (Camb) ; 56(73): 10770, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32930315

RESUMO

Correction for 'Thermo- and electro-switchable Cs⊂{Fe4-Fe4} cubic cage: spin-transition and electrochromism' by Jana Glatz et al., Chem. Commun., 2020, DOI: 10.1039/d0cc04279j.

19.
Chem Commun (Camb) ; 56(74): 10950-10953, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32797123

RESUMO

A mixed valence Cs⊂{Fe4-Fe4} cyanido-cube was synthesized and structurally characterized. The molecule, which is robust in solution, shows remarkable electronic versatility. Electrochromic properties associated with nine different electronic states are observed in solution together with a thermo-induced spin-transition in the solid state.

20.
Nat Commun ; 11(1): 3611, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681047

RESUMO

Temperature measurement at the nanoscale is of paramount importance in the fields of nanoscience and nanotechnology, and calls for the development of versatile, high-resolution thermometry techniques. Here, the working principle and quantitative performance of a cost-effective nanothermometer are experimentally demonstrated, using a molecular spin-crossover thin film as a surface temperature sensor, probed optically. We evidence highly reliable thermometric performance (diffraction-limited sub-µm spatial, µs temporal and 1 °C thermal resolution), which stems to a large extent from the unprecedented quality of the vacuum-deposited thin films of the molecular complex [Fe(HB(1,2,4-triazol-1-yl)3)2] used in this work, in terms of fabrication and switching endurance (>107 thermal cycles in ambient air). As such, our results not only afford for a fully-fledged nanothermometry method, but set also a forthcoming stage in spin-crossover research, which has awaited, since the visionary ideas of Olivier Kahn in the 90's, a real-world, technological application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...