Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Eur Radiol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861162

RESUMO

INTRODUCTION: To investigate the relationship between collaterals and blood-brain barrier (BBB) permeability on pre-treatment MRI in a cohort of acute ischemic stroke (AIS) patients treated with thrombectomy. METHODS: We conducted a retrospective analysis of the HIBISCUS-STROKE cohort, a single-center observational study that enrolled patients treated with thrombectomy from 2016 to 2022. Dynamic-susceptibility MRIs were post-processed to generate K2 maps with arrival-time correction, which were co-registered with apparent diffusion coefficient (ADC) maps. The 90th percentile of K2 was extracted from the infarct core-defined by an ADC ≤ 620 × 10-6 mm2/s with manual adjustments-and expressed as a percentage change compared to the contralateral white matter. Collaterals were assessed using pre-thrombectomy digital subtraction arteriography with an ASITN/SIR score < 3 defining poor collaterals. RESULTS: Out of 249 enrolled, 101 (40.6%) were included (median age: 72.0 years, 52.5% of males, median NIHSS score at admission: 15.0). Patients with poor collaterals (n = 44) had worse NIHSS scores (median: 16.0 vs 13.0, p = 0.04), larger infarct core volumes (median: 43.7 mL vs 9.5 mL, p < 0.0001), and higher increases in K2 (median: 346.3% vs 152.7%, p = 0.003). They were less likely to achieve successful recanalization (21/44 vs 51/57, p < 0.0001) and experienced more frequent hemorrhagic transformation (16/44 vs 9/57, p = 0.03). On multiple variable analysis, poor collaterals were associated with larger infarct cores (odds ratio (OR) = 1.12, 95% confidence interval (CI): [1.07, 1.17], p < 0.0001) and higher increases in K2 (OR = 6.63, 95% CI: [2.19, 20.08], p = 0.001). CONCLUSION: Poor collaterals are associated with larger infarct cores and increased BBB permeability at admission MRI. CLINICAL RELEVANCE STATEMENT: Poor collaterals are associated with a larger infarct core and increased BBB permeability at admission MRI of AIS patients treated with thrombectomy. These findings may have translational interests for extending thrombolytic treatment eligibility and developing neuroprotective strategies. KEY POINTS: In AIS, collaterals and BBB disruption have been both linked to hemorrhagic transformation. Poor collaterals were associated with larger ischemic cores and increased BBB permeability on pre-treatment MRI. These findings could contribute to hemorrhagic transformation risk stratification, thereby refining clinical decision-making for reperfusion therapies.

2.
Lab Anim (NY) ; 53(1): 13-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37996697

RESUMO

Non-human primate studies are unique in translational research, especially in neurosciences where neuroimaging approaches are the preferred methods used for cross-species comparative neurosciences. In this regard, neuroimaging database development and sharing are encouraged to increase the number of subjects available to the community, while limiting the number of animals used in research. Here we present a simultaneous positron emission tomography (PET)/magnetic resonance (MR) dataset of 20 Macaca fascicularis images structured according to the Brain Imaging Data Structure standards. This database contains multiple MR imaging sequences (anatomical, diffusion and perfusion imaging notably), as well as PET perfusion and inflammation imaging using respectively [15O]H2O and [11C]PK11195 radiotracers. We describe the pipeline method to assemble baseline data from various cohorts and qualitatively assess all the data using signal-to-noise and contrast-to-noise ratios as well as the median of intensity and the pseudo-noise-equivalent-count rate (dynamic and at maximum) for PET data. Our study provides a detailed example for quality control integration in preclinical and translational PET/MR studies with the aim of increasing reproducibility. The PREMISE database is stored and available through the PRIME-DE consortium repository.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Animais , Humanos , Macaca fascicularis , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Primatas , Encéfalo/diagnóstico por imagem
3.
Magn Reson Imaging ; 102: 203-211, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37321377

RESUMO

CEST MRI methods, such as APT and NOE imaging reveal biomarkers with significant diagnostic potential due to their ability to access molecular tissue information. Regardless of the technique used, CEST MRI data are affected by static magnetic B0 and radiofrequency B1 field inhomogeneities that degrade their contrast. For this reason, the correction of B0 field-induced artefacts is essential, whereas accounting for B1 field inhomogeneities have shown significant improvements in image readability. In a previous work, an MRI protocol called WASABI was presented, which can map simultaneously B0 and B1 field inhomogeneities, while maintaining the same sequence and readout types as used for CEST MRI. Despite the highly satisfactory quality of B0 and B1 maps computed from the WASABI data, the post-processing method is based on an exhaustive search of a four-parameter space and an additional four-parameter non-linear model fitting step. This leads to long post-processing times that are prohibitive in clinical practice. This work provides a new method for fast post-processing of WASABI data with outstanding acceleration of the parameter estimation procedure and without compromising its stability. The resulting computational acceleration makes the WASABI technique suitable for clinical use. The stability of the method is demonstrated on phantom data and clinical 3 Tesla in vivo data.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Algoritmos
4.
Neurology ; 101(5): e502-e511, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290975

RESUMO

BACKGROUND AND OBJECTIVES: The aim of this study was to investigate the relationship between baseline blood-brain barrier (BBB) permeability and the kinetics of circulating inflammatory markers in a cohort of acute ischemic stroke (AIS) patients treated with mechanical thrombectomy. METHODS: The CoHort of Patients to Identify Biological and Imaging markerS of CardiovascUlar Outcomes in Stroke includes AIS patients treated with mechanical thrombectomy after admission MRI and undergoing a sequential assessment of circulating inflammatory markers. Baseline dynamic susceptibility perfusion MRI was postprocessed with arrival time correction to provide K2 maps reflecting BBB permeability. After coregistration of apparent diffusion coefficient and K2 maps, the 90th percentile of K2 value was extracted within baseline ischemic core and expressed as a percentage change compared with contralateral normal-appearing white matter. Population was dichotomized according to the median K2 value. Univariable and multiple variable logistic regression analyses were performed to investigate factors associated with increased pretreatment BBB permeability in the whole population and in patients with symptom onset <6 hours. RESULTS: In the whole population (n = 105 patients, median K2 = 1.59), patients with an increased BBB permeability had higher serum levels of matrix metalloproteinase (MMP)-9 at H48 (p = 0.02), a higher C-reactive protein (CRP) serum level at H48 (p = 0.01), poorer collateral status (p = 0.01), and a larger baseline ischemic core (p < 0.001). They were more likely to have hemorrhagic transformation (p = 0.008), larger final lesion volume (p = 0.02), and worst neurologic outcome at 3 months (p = 0.04). The multiple variable logistic regression indicated that an increased BBB permeability was associated only with ischemic core volume (odds ratio [OR] 1.04, 95% CI 1.01-1.06, p < 0.0001). Restricting analysis to patients with symptom onset <6 hours (n = 72, median K2 = 1.27), participants with an increased BBB permeability had higher serum levels of MMP-9 at H0 (p = 0.005), H6 (p = 0.004), H24 (p = 0.02), and H48 (p = 0.01), higher CRP levels at H48 (p = 0.02), and a larger baseline ischemic core (p < 0.0001). The multiple variable logistic analysis showed that increased BBB permeability was independently associated with higher H0 MMP-9 levels (OR 1.33, 95% CI 1.12-1.65, p = 0.01) and a larger ischemic core (OR 1.27, 95% CI 1.08-1.59, p = 0.04). DISCUSSION: In AIS patients, increased BBB permeability is associated with a larger ischemic core. In the subgroup of patients with symptom onset <6 hours, increased BBB permeability is independently associated with higher H0 MMP-9 levels and a larger ischemic core.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Barreira Hematoencefálica/patologia , Metaloproteinase 9 da Matriz , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/cirurgia , AVC Isquêmico/patologia , Cinética , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , Acidente Vascular Cerebral/complicações , Trombectomia , Permeabilidade
5.
J Med Imaging (Bellingham) ; 10(1): 014001, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36636489

RESUMO

Purpose: The size and location of infarct and penumbra are key to decision-making for acute ischemic stroke (AIS) management. CT perfusion (CTP) software estimate infarct and penumbra volume using contralateral hemisphere relative thresholding. This approach is not robust and widely contested by the scientific community. In this study, we investigate the use of deep learning-based algorithms to efficiently locate infarct and penumbra tissue on CTP hemodynamic maps. Approach: CTP scans were retrospectively collected for 60 and 59 patients in the infarct only and infarct + penumbra substudies respectively. Commercial CTP software was used to generate cerebral blood flow, cerebral blood volume, mean transit time, time to peak, and delay time maps. U-Net-shaped architectures were trained to segment infarct or infarct + penumbra. Test-time-augmentation, ensembling, and watershed segmentation were used as postprocessing techniques. Segmentation performance was evaluated using Dice coefficients (DC) and mean absolute volume errors (MAVE). Results: The algorithm segmented infarct tissue resulted in DC of 0.64 ± 0.03 (0.63, 0.65), and MAVE of 4.91 ± 0.94 (4.5, 5.32) mL. In comparison, the commercial software predicted infarct with a DC of 0.31 ± 0.17 (0.26, 0.36) and MAVE of 9.77 ± 8.35 (7.12, 12.42) mL. The algorithm was able to segment infarct + penumbra with a DC of 0.61 ± 0.04 (0.6, 0.63), and MAVE of 6.51 ± 1.37 (5.91, 7.11) mL. In comparison, the commercial software predicted infarct + penumbra with a DC of 0.3 ± 0.19 (0.25, 0.35) and MAVE of 9.18 ± 7.55 (7.25, 11.11) mL. Conclusions: Use of deep learning algorithms to assess severity of AIS in terms of infarct and penumbra volume is precise and outperforms current relative thresholding methods. Such an algorithm would enhance the reliability of CTP in guiding treatment decisions.

6.
Front Cardiovasc Med ; 9: 861913, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355966

RESUMO

The ischemic penumbra is defined as the severely hypoperfused, functionally impaired, at-risk but not yet infarcted tissue that will be progressively recruited into the infarct core. Early reperfusion aims to save the ischemic penumbra by preventing infarct core expansion and is the mainstay of acute ischemic stroke therapy. Intravenous thrombolysis and mechanical thrombectomy for selected patients with large vessel occlusion has been shown to improve functional outcome. Given the varying speed of infarct core progression among individuals, a therapeutic window tailored to each patient has recently been proposed. Recent studies have demonstrated that reperfusion therapies are beneficial in patients with a persistent ischemic penumbra, beyond conventional time windows. As a result, mapping the penumbra has become crucial in emergency settings for guiding personalized therapy. The penumbra was first characterized as an area with a reduced cerebral blood flow, increased oxygen extraction fraction and preserved cerebral metabolic rate of oxygen using positron emission tomography (PET) with radiolabeled O2. Because this imaging method is not feasible in an acute clinical setting, the magnetic resonance imaging (MRI) mismatch between perfusion-weighted imaging and diffusion-weighted imaging, as well as computed tomography perfusion have been proposed as surrogate markers to identify the penumbra in acute ischemic stroke patients. Transversal studies comparing PET and MRI or using longitudinal assessment of a limited sample of patients have been used to define perfusion thresholds. However, in the era of mechanical thrombectomy, these thresholds are debatable. Using various MRI methods, the original penumbra definition has recently gained a significant interest. The aim of this review is to provide an overview of the evolution of the ischemic penumbra imaging methods, including their respective strengths and limitations, as well as to map the current intellectual structure of the field using bibliometric analysis and explore future directions.

7.
Front Physiol ; 12: 483714, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912066

RESUMO

Cardiac magnetic resonance myocardial perfusion imaging can detect coronary artery disease and is an alternative to single-photon emission computed tomography or positron emission tomography. However, the complex, non-linear MR signal and the lack of robust quantification of myocardial blood flow have hindered its widespread clinical application thus far. Recently, a new Bayesian approach was developed for brain imaging and evaluation of perfusion indexes (Kudo et al., 2014). In addition to providing accurate perfusion measurements, this probabilistic approach appears more robust than previous approaches, particularly due to its insensitivity to bolus arrival delays. We assessed the performance of this approach against a well-known and commonly deployed model-independent method based on the Fermi function for cardiac magnetic resonance myocardial perfusion imaging. The methods were first evaluated for accuracy and precision using a digital phantom to test them against the ground truth; next, they were applied in a group of coronary artery disease patients. The Bayesian method can be considered an appropriate model-independent method with which to estimate myocardial blood flow and delays. The digital phantom comprised a set of synthetic time-concentration curve combinations generated with a 2-compartment exchange model and a realistic combination of perfusion indexes, arterial input dynamics, noise and delays collected from the clinical dataset. The myocardial blood flow values estimated with the two methods showed an excellent correlation coefficient (r 2 > 0.9) under all noise and delay conditions. The Bayesian approach showed excellent robustness to bolus arrival delays, with a similar performance to Fermi modeling when delays were considered. Delays were better estimated with the Bayesian approach than with Fermi modeling. An in vivo analysis of coronary artery disease patients revealed that the Bayesian approach had an excellent ability to distinguish between abnormal and normal myocardium. The Bayesian approach was able to discriminate not only flows but also delays with increased sensitivity by offering a clearly enlarged range of distribution for the physiologic parameters.

8.
BMC Med Inform Decis Mak ; 20(1): 149, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631306

RESUMO

BACKGROUND: Combining MRI techniques with machine learning methodology is rapidly gaining attention as a promising method for staging of brain gliomas. This study assesses the diagnostic value of such a framework applied to dynamic susceptibility contrast (DSC)-MRI in classifying treatment-naïve gliomas from a multi-center patients into WHO grades II-IV and across their isocitrate dehydrogenase (IDH) mutation status. METHODS: Three hundred thirty-three patients from 6 tertiary centres, diagnosed histologically and molecularly with primary gliomas (IDH-mutant = 151 or IDH-wildtype = 182) were retrospectively identified. Raw DSC-MRI data was post-processed for normalised leakage-corrected relative cerebral blood volume (rCBV) maps. Shape, intensity distribution (histogram) and rotational invariant Haralick texture features over the tumour mask were extracted. Differences in extracted features across glioma grades and mutation status were tested using the Wilcoxon two-sample test. A random-forest algorithm was employed (2-fold cross-validation, 250 repeats) to predict grades or mutation status using the extracted features. RESULTS: Shape, distribution and texture features showed significant differences across mutation status. WHO grade II-III differentiation was mostly driven by shape features while texture and intensity feature were more relevant for the III-IV separation. Increased number of features became significant when differentiating grades further apart from one another. Gliomas were correctly stratified by mutation status in 71% and by grade in 53% of the cases (87% of the gliomas grades predicted with distance less than 1). CONCLUSIONS: Despite large heterogeneity in the multi-center dataset, machine learning assisted DSC-MRI radiomics hold potential to address the inherent variability and presents a promising approach for non-invasive glioma molecular subtyping and grading.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Mutação , Gradação de Tumores , Estudos Retrospectivos
9.
Invest Radiol ; 53(8): 477-485, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29762256

RESUMO

OBJECTIVES: The aims of this study were to evaluate the agreement of computed tomography (CT)-perfusion parameter values of the normal renal cortex and various renal tumors, which were obtained by different mathematical models, and to evaluate their diagnostic accuracy. MATERIALS AND METHODS: Perfusion imaging was performed prospectively in 35 patients to analyze 144 regions of interest of the normal renal cortex and 144 regions of interest of renal tumors, including 21 clear-cell renal cell carcinomas (RCC), 6 papillary RCCs, 5 oncocytomas, 1 chromophobe RCC, 1 angiomyolipoma with minimal fat, and 1 tubulocystic RCC. Identical source data were postprocessed and analyzed on 2 commercial software applications with the following implemented mathematical models: maximum slope, Patlak plot, standard singular-value decomposition (SVD), block-circulant SVD, oscillation-limited block-circulant SVD, and Bayesian estimation technique. Results for blood flow (BF), blood volume (BV), and mean transit time (MTT) were recorded. Agreement and correlation between pairs of models and perfusion parameters were assessed. Diagnostic accuracy was evaluated by receiver operating characteristic (ROC) analysis. RESULTS: Significant differences and poor agreement of BF, BV, and MTT values were noted for most of model comparisons in both the normal renal cortex and different renal tumors. The correlations between most model pairs and perfusion parameters ranged between good and perfect (Spearman ρ = 0.79-1.00), except for BV values obtained by Patlak method (ρ = 0.61-0.72). All mathematical models computed BF and BV values, which differed significantly between clear cell RCCs, papillary RCCs, and oncocytomas, which introduces them as useful diagnostic tests to differentiate between different histologic subgroups (areas under ROC curve, 0.83-0.99). The diagnostic accuracy to discriminate between clear-cell RCCs and the renal cortex was the lowest based on the Patlak plot model (area under ROC curve, 0.76); BF and BV values obtained by other algorithms did not differ significantly in their diagnostic accuracy. CONCLUSIONS: Quantitative perfusion parameters obtained from different mathematical models cannot be used interchangeably. Based on BF and BV estimates, all models are a useful tool in the differential diagnosis of kidney tumors, with the Patlak plot model yielding a significantly lower diagnostic accuracy.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neoplasias Renais/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Feminino , Humanos , Rim/diagnóstico por imagem , Rim/patologia , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Imagem de Perfusão/métodos , Estudos Prospectivos , Curva ROC , Reprodutibilidade dos Testes
10.
Magn Reson Med Sci ; 16(1): 32-37, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27001394

RESUMO

PURPOSE: The Bayesian estimation algorithm improves the precision of bolus tracking perfusion imaging. However, this algorithm cannot directly calculate Tmax, the time scale widely used to identify ischemic penumbra, because Tmax is a non-physiological, artificial index that reflects the tracer arrival delay (TD) and other parameters. We calculated Tmax from the TD and mean transit time (MTT) obtained by the Bayesian algorithm and determined its accuracy in comparison with Tmax obtained by singular value decomposition (SVD) algorithms. METHODS: The TD and MTT maps were generated by the Bayesian algorithm applied to digital phantoms with time-concentration curves that reflected a range of values for various perfusion metrics using a global arterial input function. Tmax was calculated from the TD and MTT using constants obtained by a linear least-squares fit to Tmax obtained from the two SVD algorithms that showed the best benchmarks in a previous study. Correlations between the Tmax values obtained by the Bayesian and SVD methods were examined. RESULTS: The Bayesian algorithm yielded accurate TD and MTT values relative to the true values of the digital phantom. Tmax calculated from the TD and MTT values with the least-squares fit constants showed excellent correlation (Pearson's correlation coefficient = 0.99) and agreement (intraclass correlation coefficient = 0.99) with Tmax obtained from SVD algorithms. CONCLUSIONS: Quantitative analyses of Tmax values calculated from Bayesian-estimation algorithm-derived TD and MTT from a digital phantom correlated and agreed well with Tmax values determined using SVD algorithms.


Assuntos
Algoritmos , Teorema de Bayes , Imagem de Perfusão/métodos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Humanos , Reprodutibilidade dos Testes
11.
Med Image Anal ; 36: 197-215, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28006726

RESUMO

Perfusion imaging of the brain via Dynamic Susceptibility Contrast MRI (DSC-MRI) allows tissue perfusion characterization by recovering the tissue impulse response function and scalar parameters such as the cerebral blood flow (CBF), blood volume (CBV), and mean transit time (MTT). However, the presence of bolus dispersion causes the data to reflect macrovascular properties, in addition to tissue perfusion. In this case, when performing deconvolution of the measured arterial and tissue concentration time-curves it is only possible to recover the effective, i.e. dispersed, response function and parameters. We introduce Dispersion-Compliant Bases (DCB) to represent the response function in the presence and absence of dispersion. We perform in silico and in vivo experiments, and show that DCB deconvolution outperforms oSVD and the state-of-the-art CPI+VTF techniques in the estimation of effective perfusion parameters, regardless of the presence and amount of dispersion. We also show that DCB deconvolution can be used as a pre-processing step to improve the estimation of dispersion-free parameters computed with CPI+VTF, which employs a model of the vascular transport function to characterize dispersion. Indeed, in silico results show a reduction of relative errors up to 50% for dispersion-free CBF and MTT. Moreover, the DCB method recovers effective response functions that comply with healthy and pathological scenarios, and offers the advantage of making no assumptions about the presence, amount, and nature of dispersion.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Imageamento por Ressonância Magnética/métodos , Perfusão , Idoso , Algoritmos , Simulação por Computador , Meios de Contraste , Feminino , Humanos
12.
Magn Reson Med Sci ; 13(1): 45-50, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492744

RESUMO

PURPOSE: We compared the performances of a Bayesian estimation method and oscillation index singular value decomposition (oSVD) deconvolution for predicting final infarction using data previously obtained from 10 cynomolgus monkeys with permanent unilateral middle cerebral artery (MCA) occlusion. METHODS: We conducted baseline perfusion-weighted imaging 3 hours after MCA occlusion and generated time to peak, first moment of transit, cerebral blood flow, cerebral blood volume, and mean transit time maps using Bayesian and oSVD methods. Final infarct volume was determined by follow-up diffusion-weighted imaging (DWI) scanned 47 hours after MCA occlusion and from histological specimens. We used a region growing technique with various thresholds to determine perfusion abnormality volume. The best threshold was defined when the mean perfusion volume matched the mean final infarct volume, and Pearson's correlation coefficients (r) and intraclass correlations (ICC) were calculated between perfusion abnormality and final infarct volume at that threshold. These coefficients were compared between Bayesian and oSVD using Wilcoxon's signed rank test. P-value < 0.05 was considered a statistically significant difference. RESULTS: The Pearson's correlation coefficients were larger but not significantly different for the Bayesian technique than oSVD in 4 of 5 perfusion maps when final infarct was determined by specimen volume (P = 0.104). When final infarct volume was defined by DWI volume, all perfusion maps had a significantly higher correlation coefficient by Bayesian technique than oSVD (P = 0.043). For ICC, all perfusion maps had higher value in Bayesian than oSVD calculation, and significant differences were observed both on specimen- and DWI-defined volumes (P = 0.043 for both). CONCLUSION: The Bayesian method is more reliable than oSVD deconvolution in estimating final infarct volume.


Assuntos
Teorema de Bayes , Infarto da Artéria Cerebral Média/diagnóstico , Angiografia por Ressonância Magnética/métodos , Animais , Velocidade do Fluxo Sanguíneo , Volume Sanguíneo , Circulação Cerebrovascular , Meios de Contraste , Modelos Animais de Doenças , Gadolínio DTPA , Hemodinâmica , Processamento de Imagem Assistida por Computador , Macaca fascicularis
13.
Neuroradiology ; 55(10): 1197-203, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23852431

RESUMO

INTRODUCTION: A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated using optimized deconvolution algorithms of other software packages. Hence, we compared the accuracy of the Bayesian and deconvolution algorithms by using a digital phantom. METHODS: The digital phantom data, in which concentration-time curves reflecting various known values for cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer delays were embedded, were analyzed using the Bayesian estimation algorithm as well as delay-insensitive singular value decomposition (SVD) algorithms of two software packages that were the best benchmarks in a previous cross-validation study. Correlation and agreement of quantitative values of these algorithms with true values were examined. RESULTS: CBF, CBV, and MTT values estimated by all the algorithms showed strong correlations with the true values (r = 0.91-0.92, 0.97-0.99, and 0.91-0.96, respectively). In addition, the values generated by the Bayesian estimation algorithm for all of these parameters showed good agreement with the true values [intraclass correlation coefficient (ICC) = 0.90, 0.99, and 0.96, respectively], while MTT values from the SVD algorithms were suboptimal (ICC = 0.81-0.82). CONCLUSIONS: Quantitative analysis using a digital phantom revealed that the Bayesian estimation algorithm yielded CBF, CBV, and MTT maps strongly correlated with the true values and MTT maps with better agreement than those produced by delay-insensitive SVD algorithms.


Assuntos
Algoritmos , Volume Sanguíneo/fisiologia , Angiografia Cerebral/métodos , Artérias Cerebrais/fisiologia , Circulação Cerebrovascular/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Tomografia Computadorizada por Raios X/métodos , Inteligência Artificial , Teorema de Bayes , Velocidade do Fluxo Sanguíneo/fisiologia , Artérias Cerebrais/diagnóstico por imagem , Simulação por Computador , Humanos , Modelos Cardiovasculares , Modelos Neurológicos , Imagens de Fantasmas , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
14.
IEEE Trans Med Imaging ; 31(7): 1381-95, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22410325

RESUMO

A delay-insensitive probabilistic method for estimating hemodynamic parameters, delays, theoretical residue functions, and concentration time curves by computed tomography (CT) and magnetic resonance (MR) perfusion weighted imaging is presented. Only a mild stationarity hypothesis is made beyond the standard perfusion model. New microvascular parameters with simple hemodynamic interpretation are naturally introduced. Simulations on standard digital phantoms show that the method outperforms the oscillating singular value decomposition (oSVD) method in terms of goodness-of-fit, linearity, statistical and systematic errors on all parameters, especially at low signal-to-noise ratios (SNRs). Delay is always estimated sharply with user-supplied resolution and is purely arterial, by contrast to oSVD time-to-maximum TMAX that is very noisy and biased by mean transit time (MTT), blood volume, and SNR. Residue functions and signals estimates do not suffer overfitting anymore. One CT acute stroke case confirms simulation results and highlights the ability of the method to reliably estimate MTT when SNR is low. Delays look promising for delineating the arterial occlusion territory and collateral circulation.


Assuntos
Teorema de Bayes , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Algoritmos , Mapeamento Encefálico/métodos , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...