Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1210, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681726

RESUMO

Seasonal migrations are used by diverse animal taxa, yet the costs and benefits of migrating have rarely been empirically examined. The aim of this study was to determine how migration influences two ecological currencies, energy expenditure and time allocated towards different behaviors, in a full annual cycle context. We compare these currencies among lesser black-backed gulls that range from short- (< 250 km) to long-distance (> 4500 km) migrants. Daily time-activity budgets were reconstructed from tri-axial acceleration and GPS, which, in conjunction with a bioenergetics model to estimate thermoregulatory costs, enabled us to estimate daily energy expenditure throughout the year. We found that migration strategy had no effect on annual energy expenditure, however, energy expenditure through time deviated more from the annual average as migration distance increased. Patterns in time-activity budgets were similar across strategies, suggesting migration strategy does not limit behavioral adjustments required for other annual cycle stages (breeding, molt, wintering). Variation among individuals using the same strategy was high, suggesting that daily behavioral decisions (e.g. foraging strategy) contribute more towards energy expenditure than an individual's migration strategy. These findings provide unprecedented new understanding regarding the relative importance of fine versus broad-scale behavioral strategies towards annual energy expenditures.


Assuntos
Migração Animal , Charadriiformes , Animais , Estações do Ano , Metabolismo Energético , Muda
2.
Sci Total Environ ; 852: 157879, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35944643

RESUMO

The energy exchange between the Earth's surface and atmosphere results in a highly dynamic habitat through which birds move. Thermal uplift is an atmospheric feature which many birds are able to exploit in order to save energy in flight, but which is governed by complex surface-atmosphere interactions. In mosaic landscapes consisting of multiple land uses, the spatial distribution of thermal uplift is expected to be heterogenous and birds may use the landscape selectively to maximise flight over areas where thermal soaring opportunities are best. Flight generalists such as the lesser black-backed gull, Larus fuscus, are expected to be less reliant on thermal uplift than obligate soaring birds. Nevertheless, gulls may select flight behaviours and routes in response to or in anticipation of thermal uplift in order to reduce their transport costs, even in landscapes where thermal uplift isn't prevalent. We explore thermal soaring over land in lesser black-backed gulls by using high-resolution GPS tracking to characterise individual instances of thermal soaring and detailed energy exchange modelling to map the thermal landscape which gulls experience. We determine that lesser black-backed gulls are regularly able to undertake thermal soaring, even in a wet temperate landscape below sea level. By examining the relationship between lesser black-backed gull flight, thermal uplift and land use, we determine that built up areas, particularly towns and cities, provide thermal uplift hotspots which lesser black-backed gulls preferentially make use of, resulting in more opportunities for energy saving flight through thermal soaring.


Assuntos
Charadriiformes , Voo Animal , Animais , Voo Animal/fisiologia , Aves , Charadriiformes/fisiologia , Ecossistema , Cidades
3.
Mov Ecol ; 9(1): 37, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34253264

RESUMO

BACKGROUND: Route choice and travel performance of fly-forage migrants are partly driven by large-scale habitat availability, but it remains unclear to what extent wind support through large-scale wind regimes moulds their migratory behaviour. We aimed to determine to what extent a trans-equatorial fly-forage migrant engages in adaptive drift through distinct wind regimes and biomes across Africa. The Inter-tropical Front (ITF) marks a strong and seasonally shifting climatic boundary at the thermal equator, and we assessed whether migratory detours were associated with this climatic feature. Furthermore, we sought to disentangle the influence of wind and biome on daily, regional and seasonal travel performance. METHODS: We GPS-tracked 19 adult Eleonora's falcons Falco eleonorae from the westernmost population on the Canary Islands across 39 autumn and 36 spring migrations to and from Madagascar. Tracks were annotated with wind data to assess the falcons' orientation behaviour and the wind support they achieved in each season and distinct biomes. We further tested whether falcon routes across the Sahel were correlated with the ITF position, and how realized wind support and biome affect daily travel times, distances and speeds. RESULTS: Changes in orientation behaviour across Africa's biomes were associated with changes in prevailing wind fields. Falcons realized higher wind support along their detours than was available along the shortest possible route by drifting through adverse autumn wind fields, but compromised wind support while detouring through supportive spring wind fields. Movements across the Sahel-Sudan zone were strongly associated to the ITF position in autumn, but were more individually variable in spring. Realized wind support was an important driver of daily travel speeds and distances, in conjunction with regional wind-independent variation in daily travel time budgets. CONCLUSIONS: Although daily travel time budgets of falcons vary independently from wind, their daily travel performance is strongly affected by orientation-dependent wind support. Falcons thereby tend to drift to minimize or avoid headwinds through opposing wind fields and over ecological barriers, while compensating through weak or supportive wind fields and over hospitable biomes. The ITF may offer a climatic leading line to fly-forage migrants in terms of both flight and foraging conditions.

4.
Behav Ecol ; 32(3): 539-552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104110

RESUMO

Climate warming advances the optimal timing of breeding for many animals. For migrants to start breeding earlier, a concurrent advancement of migration is required, including premigratory fueling of energy reserves. We investigate whether barnacle geese are time constrained during premigratory fueling and whether there is potential to advance or shorten the fueling period to allow an earlier migratory departure. We equipped barnacle geese with GPS trackers and accelerometers to remotely record birds' behavior, from which we calculated time budgets. We examined how time spent foraging was affected by the available time (during daylight and moonlit nights) and thermoregulation costs. We used an energetic model to assess onset and rates of fueling and whether geese can further advance fueling by extending foraging time. We show that, during winter, when facing higher thermoregulation costs, geese consistently foraged at night, especially during moonlit nights, in order to balance their energy budgets. In spring, birds made use of the increasing day length and gained body stores by foraging longer during the day, but birds stopped foraging extensively during the night. Our model indicates that, by continuing nighttime foraging throughout spring, geese may have some leeway to advance and increase fueling rate, potentially reaching departure body mass 4 days earlier. In light of rapid climatic changes on the breeding grounds, whether this advancement can be realized and whether it will be sufficient to prevent phenological mismatches remains to be determined.

5.
J Anim Ecol ; 90(5): 1058-1070, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33496020

RESUMO

As environmental conditions fluctuate across years, seasonal migrants must determine where and when to move without comprehensive knowledge of conditions beyond their current location. Animals can address this challenge by following cues in their local environment to vary behaviour in response to current conditions, or by moving based on learned or inherited experience of past conditions resulting in fixed behaviour across years. It is often claimed that long-distance migrants are more fixed in their migratory behaviour because as distance between breeding and wintering areas increases, reliability of cues to predict distant and future conditions decreases. While supported by some population-level studies, the influence of migration distance on behavioural variation is seldom examined on an individual level. Lesser black-backed gulls Larus fuscus are generalist seabirds that use a diversity of migration strategies. Using high-resolution multi-year GPS tracking data from 82 individuals from eight colonies in Western Europe, we quantified inter- and intra-individual variation in non-breeding distributions, winter site fidelity, migration routes and timing of migration, with the objectives of determining how much variation lesser black-backed gulls have in their migratory behaviour and examining whether variation changes with migration distance. We found that intra-individual variation was significantly lower than variation between individuals for non-breeding distributions, winter site fidelity, migration routes and timing of migration, resulting in consistent individual strategies for all behaviours examined. Yet, intra-individual variation ranged widely among individuals (e.g. winter site overlap: 0-0.91 out of 1; migration timing: 0-192 days), and importantly, individual differences in variation were not related to migration distance. The apparent preference for maintaining a consistent strategy, present in even the shortest distance migrants, suggests that familiarity may be more advantageous than exactly tracking current environmental conditions. Yet, variation in behaviour across years was observed in many individuals and could be substantial. This suggests that individuals, irrespective of migration distance, have the capacity to adjust to current conditions within the broad confines of their individual strategies, and occasionally, even change their strategy.


Assuntos
Migração Animal , Charadriiformes , Animais , Europa (Continente) , Reprodutibilidade dos Testes , Estações do Ano
6.
Zookeys ; 947: 143-155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733133

RESUMO

In this data paper three datasets are described containing GPS tracking and acceleration data of Western marsh harriers (Circus aeruginosus) breeding in Belgium and the Netherlands. The Western marsh harrier is included as a threatened bird species in Annex I of the European Bird Directive due to the steep decline in population densities. In order to collect data of habitat use and migration behaviour, Western marsh harriers were equipped with light-weight solar powered GPS trackers developed by the Institute for Biodiversity and Ecosystem Dynamics (IBED) at the University of Amsterdam (University of Amsterdam Bird Tracking System, UvA-BiTS). These trackers automatically collect and store data on the bird's activity and 3D position in time and transmit these data to ground stations. The datasets were collected by the Research Institute for Nature and Forest (INBO) and the Dutch Montagu's Harrier Foundation. Tracked Western marsh harriers were breeding in the northeast of the Dutch province of Groningen and on the opposite side of the river Ems in Germany (H_GRONINGEN), in the region of Waterland-Oudeman near the Belgian-Dutch border (MH_WATERLAND), and at the left bank of the Scheldt estuary, close to the Belgian-Dutch border and north of the city of Antwerp (MH_ANTWERPEN). Most individuals remained within 10 km from their nesting sites during the breeding season and wintered in West Africa. H_GRONINGEN contains 987,493 GPS fixes and 3,853,859 acceleration records of four individuals since 2012. MH_WATERLAND contains 377,910 GPS fixes of seven individuals. Sampling in this region began in 2013. Three more Western marsh harriers were tagged in the Scheldt estuary near Antwerp more recently in 2018 (one individual) and 2019 (two individuals) for the MH_ANTWERPEN study, which contains 47,917 GPS fixes and 227,746 acceleration records. The three Western marsh harrier datasets were published as separate studies in Movebank (https://www.movebank.org) and archived as data packages in Zenodo (https://www.zenodo.org) to ensure long-term preservation and versioning of the data.

7.
Ecol Evol ; 10(11): 4716-4725, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32551055

RESUMO

Research focused on evaluating how human food subsidies influence the foraging ecology of scavenger species is scarce but essential for elucidating their role in shaping behavioral patterns, population dynamics, and potential impacts on ecosystems. We evaluate the potential role of humans in shaping the year-round distribution and habitat use of individuals from a typical scavenger species, the yellow-legged gull (Larus michahellis), breeding at southwestern Spain. To do this, we combined long-term, nearly continuous GPS-tracking data with spatially explicit information on habitat types and distribution of human facilities, as proxied by satellite imagery of artificial night lights. Overall, individuals were mainly associated with freshwater habitats (mean proportion, 95% CI: 40.6%, 36.9%-44.4%) followed by the marine-related systems (40.3, 37.7%-42.8%), human-related habitats (13.5%, 13.2%-13.8%), and terrestrial systems (5.5%, 4.6%-6.5%). However, these relative contributions to the overall habitat usage largely changed throughout the annual cycle as a likely response to ecological/physiological constraints imposed by varying energy budgets and environmental constraints resulting from fluctuations in the availability of food resources. Moreover, the tight overlap between the year-round spatial distribution of gulls and that of human facilities suggested that the different resources individuals relied on were likely of anthropogenic origin. We therefore provide evidence supporting the high dependence of this species on human-related food resources throughout the annual cycle. Owing to the ability of individuals to disperse and reach transboundary areas of Spain, Portugal, or Morocco, international joint efforts aimed at restricting the availability of human food resources would be required to manage this overabundant species and the associated consequences for biodiversity conservation (e.g., competitive exclusion of co-occurring species) and human interests (e.g., airports or disease transmission).

8.
Mov Ecol ; 8: 17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32341783

RESUMO

BACKGROUND: Human activities have profoundly altered the spatio-temporal availability of food resources. Yet, there is a clear lack of knowledge on how opportunistic species adapt to these new circumstances by scheduling their daily rhythms and adjust their foraging decisions to predicable patterns of anthropic food subsidies. Here, we used nearly continuous GPS tracking data to investigate the adaptability of daily foraging activity in an opportunistic predator, the yellow-legged gull (Larus michahellis), in response to human schedules. METHODS: By using waveform analysis, we compared timing and magnitude of peaks in daily activity of different GPS-tracked individuals in eleven different habitat types, in relation to type of day (i.e., weekday vs. weekend). RESULTS: Daily activity rhythms varied greatly depending on whether it was a weekday or weekend, thus suggesting that gulls' activity peaks matched the routines of human activity in each habitat type. We observed for the first time two types of activity as modelled by waveforms analysis: marine habitats showed unimodal patterns with prolonged activity and terrestrial habitats showed bimodal patterns with two shorter and variable activity peaks. CONCLUSIONS: Our results suggest that gulls are able to fine-tune their daily activity rhythms to habitat-specific human schedules, since these likely provide feeding opportunities. Behavioral plasticity may thus be an important driver of expansive population dynamics. Information on predictable relationships between daily activity patterns of gulls and human activities is therefore relevant to their population management.

9.
J Anim Ecol ; 89(11): 2631-2643, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33439490

RESUMO

Large-scale environmental forces can influence biodiversity at different levels of biological organization. Climate, in particular, is often associated with species distributions and diversity gradients. However, its mechanistic link to population dynamics is still poorly understood. Here, we unravelled the full mechanistic path by which a climatic driver, the Atlantic trade winds, determines the viability of a bird population. We monitored the breeding population of Eleonora's falcons in the Canary Islands for over a decade (2007-2017) and integrated different methods and data to reconstruct how the availability of their prey (migratory birds) is regulated by trade winds. We tracked foraging movements of breeding adults using GPS, monitored departure of migratory birds using weather radar and simulated their migration trajectories using an individual-based, spatially explicit model. We demonstrate that regional easterly winds regulate the flux of migratory birds that is available to hunting falcons, determining food availability for their chicks and consequent breeding success. By reconstructing how migratory birds are pushed towards the Canary Islands by trade winds, we explain most of the variation (up to 86%) in annual productivity for over a decade. This study unequivocally illustrates how a climatic driver can influence local-scale demographic processes while providing novel evidence of wind as a major determinant of population fitness in a top predator.


Los factores ambientales a gran escala afectan a la biodiversidad a distintos niveles de organización. El clima en particular, a menudo se asocia a la distribución de especies y gradientes de diversidad. Sin embargo, los mecanismos que lo vinculan con la dinámica de poblaciones siguen siendo poco conocidos. En este estudio revelamos el mecanismo a través del cual un factor climático, los vientos Alisios atlánticos, determinan la viabilidad de una población de una especie de ave rapaz. Monitorizamos la población canaria de Halcón de Eleonor durante una década (2007­2017) e integramos distintos datos y métodos para reconstruir cómo la disponibilidad de alimento (pequeñas aves migratorias) es regulada por los vientos Alisios. Además, monitorizamos los movimientos de caza de adultos reproductores mediante GPS y el inicio de la migración de sus presas mediante un radar meteorológico, y simulamos la trayectoria de migración de estas presas utilizando un modelo espacialmente explícito basado en el individuo. Demostramos que los patrones de vientos del este regulan el flujo de aves migratorias que determina la disponibilidad de alimento para los halcones y sus pollos y, por tanto, su éxito reproductor. Al reconstruir cómo las aves migratorias son desviadas hasta las Islas Canarias por los vientos Alisios conseguimos explicar la mayor parte de la variación (hasta el 86%) en la productividad anual de los halcones durante una década. Este estudio ilustra cómo un fenómeno climático a gran escala puede afectar a los procesos demográficos a escala local y aporta nueva evidencia de que el viento puede ser un importante factor determinante de la eficacia biológica de un predador.


Assuntos
Aves , Falconiformes , Migração Animal , Animais , Estações do Ano , Espanha , Tempo (Meteorologia) , Vento
10.
Sci Rep ; 9(1): 10659, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337777

RESUMO

Wildlife that exploit human-made habitats hosts and spreads bacterial pathogens. This shapes the epidemiology of infectious diseases and facilitates pathogen spill-over between wildlife and humans. This is a global problem, yet little is known about the dissemination potential of pathogen-infected animals. By combining molecular pathogen diagnosis with GPS tracking of pathogen-infected gulls, we show how this knowledge gap could be filled at regional scales. Specifically, we generated pathogen risk maps of Salmonella, Campylobacter and Chlamydia based on the spatial movements of pathogen-infected yellow-legged gulls (Larus michahellis) equipped with GPS recorders. Also, crossing this spatial information with habitat information, we identified critical habitats for the potential transmission of these bacteria in southern Europe. The use of human-made habitats by infected-gulls could potentially increase the potential risk of direct and indirect bidirectional transmission of pathogens between humans and wildlife. Our findings show that pathogen-infected wildlife equipped with GPS recorders can provide accurate information on the spatial spread risk for zoonotic bacteria. Integration of GPS-tracking with classical epidemiological approaches may help to improve zoonosis surveillance and control programs.


Assuntos
Migração Animal/fisiologia , Infecções por Campylobacter/transmissão , Infecções por Chlamydia/transmissão , Infecções por Salmonella/transmissão , Zoonoses/transmissão , Animais , Animais Selvagens , Charadriiformes , Europa (Continente) , Sistemas de Informação Geográfica , Humanos
11.
Sci Rep ; 9(1): 9659, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273241

RESUMO

Interactions between landscape and atmosphere result in a dynamic flight habitat which birds may use opportunistically to save energy during flight. However, their ability to utilise these dynamic landscapes and its influence on shaping movement paths is not well understood. We investigate the degree to which gulls utilise fine scale orographic lift created by wind deflected upwards over landscape features in a virtually flat landscape. Using accelerometer measurements and GPS tracking, soaring flight is identified and analysed with respect to orographic lift, modelled using high-resolution digital elevation models and wind measurements. The relationship between orographic lift and flight routes suggests gulls have advanced knowledge of their aerial surroundings and the benefits to be gained from them, even regarding small features such as tree lines. We show that in a landscape constantly influenced by anthropogenic change, the structure of our landscape has an aerial impact on flight route connectivity and costs.

12.
Ambio ; 48(8): 900-912, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30244355

RESUMO

Society's perception of ecosystem services is a key issue in conservation, particularly for endangered species providing services linked to human activities. Misperceptions may lead to wildlife-human conflicts with the risk of disappearance of the species involved. We contrasted farmers' perceptions with highly accurate quantitative data of an endangered vulture species, which provide ecosystem services. We combined surveys of 59 farmers with data from 48 GPS-tagged Canarian Egyptian vultures (Neophron percnopterus majorensis endemic to the Spanish Canary Islands) to disentangle factors influencing consistency between farmers' awareness of vulture occurrence on their properties and vulture behavior. Egyptian vultures were perceived as the main providers of scavenging services and the most beneficial avian scavenger. Consistency between farmers' perceptions (surveys) and vulture use of their farms (GPS data) was higher in the morning, in older males, and at farms with lower livestock numbers, located near vulture communal roosts, and visited more frequently by vultures. Our results underline the potential influence of modern livestock husbandry in disconnecting people from ecosystems, and how appreciation could be even lower for scarce or threatened ecosystem service providers.


Assuntos
Ecossistema , Falconiformes , Idoso , Animais , Conservação dos Recursos Naturais , Fazendeiros , Humanos , Masculino , Espanha
13.
Sci Rep ; 8(1): 15155, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310140

RESUMO

Despite increasing work detailing the presence of foraging specializations across a range of taxa, limited attention so far has been given to the role of spatiotemporal variation in food predictability in shaping individual resource selection. Here, we studied the exploitation of human-provided carrion resources differing in predictability by Canarian Egyptian vultures (Neophron percnopterus majorensis). We focussed specifically on the role of individual characteristics and spatial constraints in shaping patterns of resource use. Using high-resolution GPS data obtained from 45 vultures tracked for 1 year, we show that individual vultures were repeatable in both their monthly use of predictable and semi-predicable resources (feeding station vs. farms) and monthly levels of mobility (home range size and flight activity). However, individual foraging activities were simultaneously characterized by a high degree of (temporal) plasticity in the use of the feeding station in specific months. Individual rank within dominance hierarchy revealed sex-dependent effects of social status on resource preference in breeding adults, illustrating the potential complex social mechanisms underpinning status-dependent resource use patterns. Our results show that predictable food at feeding stations may lead to broad-scale patterns of resource partitioning and affect both the foraging and social dynamics within local vulture populations.


Assuntos
Aves/fisiologia , Comportamento Alimentar , Comportamento Social , Distribuição Animal , Animais , Ecossistema , Movimento
14.
Ecol Evol ; 8(13): 6788-6799, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30038775

RESUMO

Unlike smaller raptors, which can readily use flapping flight, large raptors are mainly restricted to soaring flight due to energetic constraints. Soaring comprises of two main strategies: thermal and orographic soaring. These soaring strategies are driven by discrete uplift sources determined by the underlying topography and meteorological conditions in an area. High-resolution GPS tracking of raptor flight allows the identification of these flight strategies and interpretation of the spatiotemporal occurrence of thermal and orographic soaring. In this study, we develop methods to identify soaring flight behaviors from high-resolution GPS tracking data of Verreaux's eagle Aquila verreauxii and analyze these data to understand the conditions that promote the use of thermal and orographic soaring. We use these findings to predict the use of soaring flight both spatially (across the landscape) and temporally (throughout the year) in two topographically contrasting regions in South Africa. We found that topography is important in determining the occurrence of soaring flight and that thermal soaring occurs in relatively flat areas which are likely to have good thermal uplift availability. The predicted use of orographic soaring was predominately determined by terrain slope. Contrary to our expectations, the topography and meteorology of eagle territories in the Sandveld promoted the use of soaring flight to a greater extent than in territories in the more mountainous Cederberg region. Spatiotemporal mapping of predicted flight behaviors can broaden our understanding of how large raptors like the Verreaux's eagle use their habitat and how that links to energetics (as the preferential use of areas that maximize net energy gain is expected), reproductive success, and ultimately population dynamics. Understanding the fine-scale landscape use and environmental drivers of raptor flight can also help to predict and mitigate potential detrimental effects of anthropogenic developments, such as mortality via collision with wind turbines.

15.
Proc Biol Sci ; 285(1881)2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-30051848

RESUMO

Nearly 20% of all bird species migrate between breeding and nonbreeding sites annually. Their migrations include storied feats of endurance and physiology, from non-stop trans-Pacific crossings to flights at the cruising altitudes of jetliners. Despite intense interest in these performances, there remains great uncertainty about which factors most directly influence bird behaviour during migratory flights. We used GPS trackers that measure an individual's altitude and wingbeat frequency to track the migration of black-tailed godwits (Limosa limosa) and identify the abiotic factors influencing their in-flight migratory behaviour. We found that godwits flew at altitudes above 5000 m during 21% of all migratory flights, and reached maximum flight altitudes of nearly 6000 m. The partial pressure of oxygen at these altitudes is less than 50% of that at sea level, yet these extremely high flights occurred in the absence of topographical barriers. Instead, they were associated with high air temperatures at lower altitudes and increasing wind support at higher altitudes. Our results therefore suggest that wind, temperature and topography all play a role in determining migratory behaviour, but that their relative importance is context dependent. Extremely high-altitude flights may thus not be especially rare, but they may only occur in very specific environmental contexts.


Assuntos
Altitude , Migração Animal , Charadriiformes/fisiologia , Temperatura , Vento , África , Ar , Animais , Europa (Continente) , Feminino , Sistemas de Informação Geográfica , Geografia , Países Baixos
16.
Curr Biol ; 28(15): 2467-2473.e4, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30033332

RESUMO

Climate warming challenges animals to advance their timing of reproduction [1], but many animals appear to be unable to advance at the same rate as their food species [2, 3]. As a result, mismatches can arise between the moment of largest food requirements for their offspring and peak food availability [4-6], with important fitness consequences [7]. For long-distance migrants, adjustment of phenology to climate warming may be hampered by their inability to predict the optimal timing of arrival at the breeding grounds from their wintering grounds [8]. Arrival can be advanced if birds accelerate migration by reducing time on stopover sites [9, 10], but a recent study suggests that most long-distance migrants are on too tight a schedule to do so [11]. This may be different for capital-breeding migrants, which use stopovers not only to fuel migration but also to acquire body stores needed for reproduction [12-14]. By combining multiple years of tracking and reproduction data, we show that a long-distance migratory bird (the barnacle goose, Branta leucopsis) accelerates its 3,000 km spring migration to advance arrival on its rapidly warming Arctic breeding grounds. As egg laying has advanced much less than arrival, they still encounter a phenological mismatch that reduces offspring survival. A shift toward using more local resources for reproduction suggests that geese first need to refuel body stores at the breeding grounds after accelerated migration. Although flexibility in body store use allows migrants to accelerate migration, this cannot solve the time constraint they are facing under climate warming.


Assuntos
Migração Animal/fisiologia , Mudança Climática , Gansos/fisiologia , Animais , Regiões Árticas , Europa (Continente) , Feminino , Aquecimento Global , Reprodução , Estações do Ano
17.
Int J Environ Res ; 12(3): 313-325, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31007688

RESUMO

Being one of the most frequently killed raptors by collision with wind turbines, little is known about the Griffon vulture's flight strategies and behaviour in a fine scale. In this study, we used high-resolution tracking data to differentiate between the most frequently observed flight types of the Griffon, and evaluated the performance of our proposed approach by an independent observation during a period of 4 weeks of fieldwork. Five passive flight types including three types of soaring and two types of gliding were discriminated using the patterns of measured GPS locations. Of all flight patterns, gliding was classified precisely (precision = 88%), followed by linear and thermal soaring with precision of 83 and 75%, respectively. The overall accuracy of our classification was 70%. Our study contributes a baseline technique using high-resolution tracking data for the classification of flight types, and is one step forward towards the collision management of this species.

18.
Ecol Lett ; 21(1): 93-103, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29178243

RESUMO

The daunting complexity of ecosystems has led ecologists to use mathematical modelling to gain understanding of ecological relationships, processes and dynamics. In pursuit of mathematical tractability, these models use simplified descriptions of key patterns, processes and relationships observed in nature. In contrast, ecological data are often complex, scale-dependent, space-time correlated, and governed by nonlinear relations between organisms and their environment. This disparity in complexity between ecosystem models and data has created a large gap in ecology between model and data-driven approaches. Here, we explore data assimilation (DA) with the Ensemble Kalman filter to fuse a two-predator-two-prey model with abundance data from a 2600+ day experiment of a plankton community. We analyse how frequently we must assimilate measured abundances to predict accurately population dynamics, and benchmark our population model's forecast horizon against a simple null model. Results demonstrate that DA enhances the predictability and forecast horizon of complex community dynamics.


Assuntos
Ecologia , Cadeia Alimentar , Modelos Biológicos , Ecossistema , Plâncton , Dinâmica Populacional
19.
Sci Rep ; 7(1): 8798, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821735

RESUMO

Conservation of migratory species faces the challenge of understanding the ecological requirements of individuals living in two geographically separated regions. In some cases, the entire population of widely distributed species congregates at relatively small wintering areas and hence, these areas become a priority for the species' conservation. Satellite telemetry allows fine tracking of animal movements and distribution in those less known, often remote areas. Through integrating satellite and GPS data from five separated populations comprising most of the breeding range, we created a wide habitat suitability model for the Eleonora's falcon on its wintering grounds in Madagascar. On this basis, we further investigated, for the first time, the impact of climate change on the future suitability of the species' wintering areas. Eleonora's falcons are mainly distributed in the north and along the east of Madagascar, exhibiting strong site fidelity over years. The current species' distribution pattern is associated with climatic factors, which are likely related to food availability. The extent of suitable areas for Eleonora's falcon is expected to increase in the future. The integration of habitat use information and climatic projections may provide insights on the consequences of global environmental changes for the long-term persistence of migratory species populations.


Assuntos
Migração Animal , Aves Predatórias , Estações do Ano , Animais , Ecossistema , Geografia , Madagáscar
20.
Biol Lett ; 13(6)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28615350

RESUMO

Long-distance migrants are particularly recognized for the distances covered on migration, yet little is known about the distances they cover during the rest of the year. GPS-tracks of 29 Montagu's harriers from breeding areas in France, The Netherlands and Denmark showed that harriers fly between 35 653 and 88 049 km yr-1, of which on average only 28.5% is on migration. Mean daily distances during migration were 296 km d-1 in autumn and 252 km d-1 in spring. Surprisingly, males' daily distances during breeding (217 km d-1) were close to those during migration, whereas breeding females moved significantly less (101 km d-1) than males. In terms of flight distance, the breeding season seemed nearly as demanding as migration periods for males. During the six winter months, both sexes moved less (114 and 128 km d-1 for females and males, respectively) than during migration. Harriers therefore covered shorter daily distances during winter which might allow birds to compensate for the more demanding phases of migration and breeding.


Assuntos
Falconiformes , Migração Animal , Animais , Dinamarca , Feminino , França , Masculino , Países Baixos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...