Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Cell ; 115(6): e202200110, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36958013

RESUMO

BACKGROUND INFORMATION: During tumor invasion and metastasis processes, cancer cells are exposed to major compressive and shearing forces, due to their migration through extracellular matrix, dense cell areas, and complex fluids, which may lead to numerous plasma membrane damages. Cancer cells may survive to these mechanical stresses thanks to an efficient membrane repair machinery. Consequently, this machinery may constitute a relevant target to inhibit cancer cell dissemination. RESULTS: We show here that annexin-A5 (ANXA5) and ANXA6 participate in membrane repair of MDA-MB-231 cells, a highly invasive triple-negative breast cancer cell line. These crucial components of the membrane repair machinery are substantially expressed in breast cancer cells in correlation with their invasive properties. In addition, high expression of ANXA5 and ANXA6 predict poor prognosis in high-grade lung, gastric, and breast cancers. In zebrafish, the genetic inhibition of ANXA5 and ANXA6 leads to drastic reduction of tumor cell dissemination. CONCLUSION: We conclude that the inhibition of ANXA5 and ANXA6 prevents membrane repair in cancer cells, which are thus unable to survive to membrane damage during metastasis. SIGNIFICANCE: This result opens a new therapeutic strategy based on targeting membrane repair machinery to inhibit tumor invasion and metastasis.


Assuntos
Neoplasias , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Anexina A6/genética , Anexina A6/metabolismo , Anexina A5/genética , Anexina A5/metabolismo , Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Neoplasias/metabolismo
2.
Membranes (Basel) ; 12(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35207075

RESUMO

Defects in membrane repair contribute to the development of muscular dystrophies, such as Miyoshi muscular dystrophy 1, limb girdle muscular dystrophy (LGMD), type R2 or R12. Deciphering membrane repair dysfunctions in the development of muscular dystrophies requires precise and detailed knowledge of the membrane repair machinery in healthy human skeletal muscle cells. Using correlative light and electron microscopy (CLEM), we studied the trafficking of four members of the annexin (ANX) family, in myotubes damaged by laser ablation. Our data support a model in which ANXA4 and ANXA6 are recruited to the disruption site by propagating as a wave-like motion along the sarcolemma. They may act in membrane resealing by proceeding to sarcolemma remodeling. On the other hand, ANXA1 and A2 exhibit a progressive cytoplasmic recruitment, likely by interacting with intracellular vesicles, in order to form the lipid patch required for membrane resealing. Once the sarcolemma has been resealed, ANXA1 is released from the site of the membrane injury and returns to the cytosol, while ANXA2 remains accumulated close to the wounding site on the cytoplasmic side. On the other side of the repaired sarcolemma are ANXA4 and ANXA6 that face the extracellular milieu, where they are concentrated in a dense structure, the cap subdomain. The proposed model provides a basis for the identification of cellular dysregulations in the membrane repair of dystrophic human muscle cells.

3.
Int J Mol Sci ; 22(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067866

RESUMO

Muscular dystrophies constitute a group of genetic disorders that cause weakness and progressive loss of skeletal muscle mass. Among them, Miyoshi muscular dystrophy 1 (MMD1), limb girdle muscular dystrophy type R2 (LGMDR2/2B), and LGMDR12 (2L) are characterized by mutation in gene encoding key membrane-repair protein, which leads to severe dysfunctions in sarcolemma repair. Cell membrane disruption is a physiological event induced by mechanical stress, such as muscle contraction and stretching. Like many eukaryotic cells, muscle fibers possess a protein machinery ensuring fast resealing of damaged plasma membrane. Members of the annexins A (ANXA) family belong to this protein machinery. ANXA are small soluble proteins, twelve in number in humans, which share the property of binding to membranes exposing negatively-charged phospholipids in the presence of calcium (Ca2+). Many ANXA have been reported to participate in membrane repair of varied cell types and species, including human skeletal muscle cells in which they may play a collective role in protection and repair of the sarcolemma. Here, we discuss the participation of ANXA in membrane repair of healthy skeletal muscle cells and how dysregulation of ANXA expression may impact the clinical severity of muscular dystrophies.


Assuntos
Anexinas/metabolismo , Proteínas de Membrana/metabolismo , Distrofias Musculares/metabolismo , Anexina A1/metabolismo , Anexina A1/fisiologia , Anexinas/fisiologia , Membrana Celular/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/fisiopatologia
4.
Cells ; 9(7)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708200

RESUMO

Defects in membrane repair contribute to the development of some muscular dystrophies, highlighting the importance to decipher the membrane repair mechanisms in human skeletal muscle. In murine myofibers, the formation of a cap subdomain composed notably by annexins (Anx) is critical for membrane repair. We applied membrane damage by laser ablation to human skeletal muscle cells and assessed the behavior of annexin-A6 (AnxA6) tagged with GFP by correlative light and electron microscopy (CLEM). We show that AnxA6 was recruited to the site of membrane injury within a few seconds after membrane injury. In addition, we show that the deficiency in AnxA6 compromises human sarcolemma repair, demonstrating the crucial role played by AnxA6 in this process. An AnxA6-containing cap-subdomain was formed in damaged human myotubes in about one minute. Through transmission electron microscopy (TEM), we observed that extension of the sarcolemma occurred during membrane resealing, which participated in forming a dense lipid structure in order to plug the hole. By properties of membrane folding and curvature, AnxA6 helped in the formation of this tight structure. The compaction of intracellular membranes-which are used for membrane resealing and engulfed in extensions of the sarcolemma-may also facilitate elimination of the excess of lipid and protein material once cell membrane has been repaired. These data reinforce the role played by AnxA6 and the cap subdomain in membrane repair of skeletal muscle cells.


Assuntos
Anexina A6/química , Anexina A6/metabolismo , Membrana Celular/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/patologia , Anexina A5/metabolismo , Anexina A6/ultraestrutura , Linhagem Celular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Mioblastos/metabolismo , Mioblastos/ultraestrutura , Domínios Proteicos , Frações Subcelulares/metabolismo
5.
iScience ; 23(5): 101086, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32371375

RESUMO

STOX1 is a transcription factor involved in preeclampsia and Alzheimer disease. We show that the knock-down of the gene induces rather mild effect on gene expression in trophoblast cell lines (BeWo). We identified binding sites of STOX1 shared by the two major isoforms, STOX1A and STOX1B. Profiling gene expression of cells overexpressing either STOX1A or STOX1B, we identified genes downregulated by both isoforms, with a STOX1 binding site in their promoters. Among those, STOX1-induced Annexin A1 downregulation led to abolished membrane repair in BeWo cells. By contrast, overexpression of STOX1A or B has opposite effects on trophoblast fusion (acceleration and inhibition, respectively) accompanied by syncytin genes deregulation. Also, STOX1A overexpression led to abnormal regulation of oxidative and nitrosative stress. In sum, our work shows that STOX1 isoform imbalance is a cause of gene expression deregulation in the trophoblast, possibly leading to placental dysfunction and preeclampsia.

6.
Sci Rep ; 10(1): 5147, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198481

RESUMO

Human nuclear membrane (hNM) invaginations are thought to be crucial in fusion, fission and remodeling of cells and present in many human diseases. There is however little knowledge, if any, about their lipid composition and dynamics. We therefore isolated nuclear envelope lipids from human kidney cells, analyzed their composition and determined the membrane dynamics after resuspension in buffer. The hNM lipid extract was composed of a complex mixture of phospholipids, with high amounts of phosphatidylcholines, phosphatidylinositols (PI) and cholesterol. hNM dynamics was determined by solid-state NMR and revealed that the lamellar gel-to-fluid phase transition occurs below 0 °C, reflecting the presence of elevated amounts of unsaturated fatty acid chains. Fluidity was higher than the plasma membrane, illustrating the dual action of Cholesterol (ordering) and PI lipids (disordering). The most striking result was the large magnetic field-induced membrane deformation allowing to determine the membrane bending elasticity, a property related to hydrodynamics of cells and organelles. Human Nuclear Lipid Membranes were at least two orders of magnitude more elastic than the classical plasma membrane suggesting a physical explanation for the formation of nuclear membrane invaginations.


Assuntos
Fluidez de Membrana/fisiologia , Membrana Nuclear/metabolismo , Membrana Nuclear/fisiologia , Membrana Celular/metabolismo , Colesterol/metabolismo , Ácidos Graxos Insaturados/metabolismo , Humanos , Rim/patologia , Campos Magnéticos , Espectroscopia de Ressonância Magnética , Lipídeos de Membrana/metabolismo , Transição de Fase , Fosfatidilinositóis/metabolismo , Fosfolipídeos/metabolismo
7.
Curr Protoc Cell Biol ; 81(1): e55, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30085404

RESUMO

Many cells possess the ability to repair plasma membrane disruption in physiological conditions. Growing evidence indicates a correlation between membrane repair and many human diseases. For example, a negative correlation is observed in muscle where failure to reseal sarcolemma may contribute to the development of muscular dystrophies. Instead, a positive correlation is observed in cancer cells where membrane repair may be exacerbated during metastasis. Here we describe a protocol that combines laser technology for membrane damage, immunostaining with gold nanoparticles and imaging by fluorescence microscopy and transmission electron microscopy (TEM), which allows the characterization of the molecular machinery involved in membrane repair. Fluorescence microscopy enables to determine the subcellular localization of candidate proteins in damaged cells while TEM offers high-resolution ultrastructural analysis of the µm²-disruption site, which enables to decipher the membrane repair mechanism. Here we focus on the study of human skeletal muscle cells, for obvious clinical interest, but this protocol is also suitable for other cell types. © 2018 by John Wiley & Sons, Inc.


Assuntos
Membrana Celular/patologia , Membrana Celular/ultraestrutura , Imageamento Tridimensional , Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos , Análise de Célula Única/métodos , Diferenciação Celular/efeitos da radiação , Linhagem Celular , Membrana Celular/efeitos da radiação , Humanos , Lasers , Raios Ultravioleta
8.
Methods Mol Biol ; 1668: 195-207, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28842911

RESUMO

The characterization of the membrane repair machinery in human skeletal muscle has become crucial, since it has been shown that some muscular dystrophies result from a defect of this fundamental physiological process. Deciphering membrane repair mechanism requires the development of methodologies allowing studying the response of skeletal muscle cells to sarcolemma damage and identifying candidate proteins playing a role in the membrane repair machinery. Here, we describe a protocol that is based on the creation of cell membrane disruption by infrared laser irradiation in human myotubes. Membrane disruption and repair are assayed by monitoring the incorporation into myotubes of the membrane probe FM1-43. This methodology has recently enabled us to show that Annexin-A5 is required for membrane repair in human skeletal muscle cells (Carmeille et al., Biochim Biophys Acta 1863:2267-2279, 2016).


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Fibras Musculares Esqueléticas/fisiologia , Sarcolema/fisiologia , Anexina A5/metabolismo , Linhagem Celular , Citosol/química , Corantes Fluorescentes/química , Humanos , Raios Infravermelhos , Proteínas de Membrana/metabolismo , Fibras Musculares Esqueléticas/química , Compostos de Piridínio/química , Compostos de Amônio Quaternário/química , Sarcolema/química , Sarcolema/efeitos da radiação , Imagem com Lapso de Tempo
9.
Biochim Biophys Acta ; 1863(9): 2267-79, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27286750

RESUMO

Defect in membrane repair contributes to the development of limb girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. In healthy skeletal muscle, unraveling membrane repair mechanisms requires to establish an exhaustive list of the components of the resealing machinery. Here we show that human myotubes rendered deficient for Annexin-A5 (AnxA5) suffer from a severe defect in membrane resealing. This defect is rescued by the addition of recombinant AnxA5 while an AnxA5 mutant, which is unable to form 2D protein arrays, has no effect. Using correlative light and electron microscopy, we show that AnxA5 binds to the edges of the torn membrane, as early as a few seconds after sarcolemma injury, where it probably self-assembles into 2D arrays. In addition, we observed that membrane resealing is associated with the presence of a cluster of lipid vesicles at the wounded site. AnxA5 is present at the surface of these vesicles and may thus participate in plugging the cell membrane disruption. Finally, we show that AnxA5 behaves similarly in myotubes from a muscle cell line established from a patient suffering from LGMD2B, a myopathy due to dysferlin mutations, which indicates that trafficking of AnxA5 during sarcolemma damage is independent of the presence of dysferlin.


Assuntos
Anexina A5/metabolismo , Membrana Celular/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Cicatrização , Adulto , Anexina A5/ultraestrutura , Linhagem Celular , Disferlina , Espaço Extracelular/metabolismo , Humanos , Lasers , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Proteínas Musculares/deficiência , Proteínas Musculares/metabolismo , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/patologia , Mutação/genética , Mioblastos/metabolismo , Mioblastos/patologia , Proteínas Recombinantes/metabolismo , Sarcolema/patologia , Frações Subcelulares/metabolismo
10.
J Steroid Biochem Mol Biol ; 149: 17-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25595040

RESUMO

Estrogens are steroid hormones that play a pivotal role in growth, differentiation and function of reproductive and non-reproductive tissues, mediated through estrogen receptors (ERs). Estrogens are involved in different genomic and non-genomic cell signaling pathways which involve well-defined subcellular ER localizations. Thus, ER activity results from complex interplays between intrinsic binding properties and specific subcellular localization. Since these two factors are deeply intricate, we carried out, in a unique yeast cell context, a comparative study to better understand structure/function/subcellular distribution relationships. This was carried out by comparing two ERs: the human ER α subtype (hERα) and the short form of the α isoform of the rainbow trout ER (rtERαS). Their distinct binding properties to agonist and antagonist ligands and subcellular localizations were characterized in Saccharomyces cerevisiae yeast cells. An unexpected partial agonistic effect of ICI 182-780 was observed for rtERαS. Concomitant to distinct binding properties, distinct subcellular localizations were observed before and after ligand stimulation. Due to the unique cell context, the link between ERs intrinsic binding properties and subcellular localizations is partly unveiled and issues are hypothesized based on the role of cytoplasmic transient complexes which play a role in the ER cytoplasmic/nuclear partition, which in turn is critical for the recruitment of co-regulators in the nucleus.


Assuntos
Receptor alfa de Estrogênio/análise , Receptor alfa de Estrogênio/metabolismo , Proteínas de Peixes/análise , Proteínas de Peixes/metabolismo , Oncorhynchus mykiss/metabolismo , Animais , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/genética , Estrogênios/farmacologia , Proteínas de Peixes/agonistas , Proteínas de Peixes/genética , Humanos , Ligantes , Oncorhynchus mykiss/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ativação Transcricional/efeitos dos fármacos , Transformação Genética
11.
Biochim Biophys Acta ; 1853(9): 2033-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25595530

RESUMO

Annexin-A5 (AnxA5) is the smallest member of the annexins, a group of soluble proteins that bind to membranes containing negatively-charged phospholipids, principally phosphatidylserine, in a Ca(2+)-dependent manner. AnxA5 presents unique properties of binding and self-assembling on membrane surfaces, forming highly ordered two-dimensional (2D) arrays. We showed previously that AnxA5 plays a central role in the machinery of cell membrane repair of murine perivascular cells, promoting the resealing of membrane damages via the formation of 2D protein arrays at membrane disrupted sites and preventing the extension of membrane ruptures. As the placenta is one of the richest source of AnxA5 in humans, we investigated whether AnxA5 was involved in membrane repair in this organ. We addressed this question at the level of human trophoblasts, either mononucleated cytotrophoblasts or multinucleated syncytiotrophoblasts, in choriocarcinoma cells and primary trophoblasts. Using established procedure of laser irradiation and fluorescence microscopy, we observed that both human cytotrophoblasts and syncytiotrophoblasts repair efficiently a µm²-size disruption. Compared to wild-type cells, AnxA5-deficient trophoblasts exhibit severe defect of membrane repair. Through specifically binding to the disrupted site as early as a few seconds after membrane wounding, AnxA5 promotes membrane resealing of injured human trophoblasts. In addition, we observed that a large membrane area containing the disrupted site was released in the extracellular milieu. We propose mechanisms ensuring membrane resealing and subsequent lesion removal in human trophoblasts. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.


Assuntos
Anexina A5/metabolismo , Membrana Celular/metabolismo , Trofoblastos/metabolismo , Anexina A5/genética , Linhagem Celular Tumoral , Membrana Celular/patologia , Feminino , Humanos , Gravidez , Trofoblastos/patologia
12.
Nat Commun ; 2: 270, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21468022

RESUMO

Eukaryotic cells possess a universal repair machinery that ensures rapid resealing of plasma membrane disruptions. Before resealing, the torn membrane is submitted to considerable tension, which functions to expand the disruption. Here we show that annexin-A5 (AnxA5), a protein that self-assembles into two-dimensional (2D) arrays on membranes upon Ca(2+) activation, promotes membrane repair. Compared with wild-type mouse perivascular cells, AnxA5-null cells exhibit a severe membrane repair defect. Membrane repair in AnxA5-null cells is rescued by addition of AnxA5, which binds exclusively to disrupted membrane areas. In contrast, an AnxA5 mutant that lacks the ability of forming 2D arrays is unable to promote membrane repair. We propose that AnxA5 participates in a previously unrecognized step of the membrane repair process: triggered by the local influx of Ca(2+), AnxA5 proteins bind to torn membrane edges and form a 2D array, which prevents wound expansion and promotes membrane resealing.


Assuntos
Anexina A5/química , Anexina A5/metabolismo , Membrana Celular/fisiologia , Cicatrização , Animais , Anexina A5/genética , Cálcio/metabolismo , Membrana Celular/química , Membrana Celular/genética , Camundongos , Camundongos Knockout
13.
Biochim Biophys Acta ; 1799(8): 546-54, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20637911

RESUMO

In most of oviparous animals, vitellogenins (VTG) are the major egg yolk precursors. They are produced in the liver under the control of estrogens. In rainbow trout (Oncorhynchus mykiss), the vtg genes cluster contains an unusually large number of almost identical gene copies. In order to identify the regulatory elements in their promoters, we used a combination of reporter plasmids containing genomic sequences including putative estrogen response elements (EREs) and we performed transient transfection assays in MCF-7 and yeast cells. We found a functional ERE corresponding to the sequence GGGGCAnnnTAACCT (rtvtgERE), which differs from the consensus ERE (ERE(cs)) by three base pairs. This non-palindromic ERE is located in the env gene of a retrotransposon relic, 180 base pairs upstream of the transcriptional start site. Fluorescence anisotropy experiments confirmed that the purified human estrogen receptor alpha (hERalpha) can specifically bind to rtvtgERE. Furthermore, we observe that the stability of hERalpha-ERE(cs) and hERalpha-rtvtgERE complexes is similar with equilibrium dissociation constants of 3.0nM and 6.2nM respectively, under our experimental conditions. Additionally, this rtvtgERE sequence displays a high E2-responsiveness through ER activation in cellulo. In the rainbow trout, the functional ERE (rtvtgERE) lies within promoter sequences which are mostly composed of sequences derived from transposable elements (TEs), which therefore may have acted as an evolutionary buffer to secure the proper expression of these genes.


Assuntos
Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica , Oncorhynchus mykiss/genética , Regiões Promotoras Genéticas/genética , Vitelogeninas/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Células Cultivadas , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Plasmídeos , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ativação Transcricional , Vitelogeninas/metabolismo
14.
Bioconjug Chem ; 20(11): 2114-22, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19835411

RESUMO

Long-circulating liposomes functionalized with cell-targeting elements and loaded with bioactive compounds present high interest as drug delivery nanosystems. We present here the synthesis and physicochemical characterization of liposomes containing PEGylated lipids covalently linked to oriented Annexin-A5 (Anx5) proteins, and we show that Anx5-functionalized liposomes are able to target phosphatidylserine (PS)-exposing membranes. The covalent coupling of Anx5 to liposomes is almost quantitative, which is mainly due to the high accessibility of the reacting groups. The influence of Anx5 functionalization on liposome aggregation was investigated by dynamic light scattering, showing that Anx5-functionalized liposomes are stable below a threshold density of 250 Anx5 molecules per liposome. Anx5-functionalized liposomes bind PS-containing membranes with very high efficacy, which is mainly due to the controlled orientation of the Anx5 at the liposome surface. A striking result, obtained by quartz crystal microbalance with dissipation monitoring, is that one single Anx5 molecule is able to anchor a liposome to a PS-containing supported membrane. Finally, we show by fluorescence microscopy that Anx5-functionalized liposomes bind PS-exposing apoptotic K562 cells with high specificity. This study demonstrates that Anx5-functionalized liposomes bind specifically to PS membranes and are thus potential candidates to deliver drug or imaging agents to sites of apoptosis or thrombosis.


Assuntos
Anexina A5/uso terapêutico , Membrana Celular/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/química , Fosfatidilserinas/metabolismo , Anexina A5/química , Apoptose , Sistemas de Liberação de Medicamentos/normas , Humanos , Células K562 , Bicamadas Lipídicas/metabolismo , Microscopia de Fluorescência , Polietilenoglicóis/química , Trombose
15.
Biol Cell ; 100(12): 717-25, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18564063

RESUMO

BACKGROUND INFORMATION: Spherulites are multi-lamellar lipidic vesicles that can encapsulate biomolecules and may be used as carriers for drug delivery. STxB (Shiga toxin B-subunit) is known to bind the glycosphingolipid Gb3 (globotriaosyl ceramide), which is overexpressed by various human tumours. After Gb3 binding, the toxin enters the cytoplasm via the retrograde route, bypassing the degrading environment of the late endosomes/lysosomes. STxB is non-toxic and has been identified as a promising tool for drug delivery. So far, applications have relied on direct coupling with therapeutic agents. In the present study, we have investigated the functionalization of spherulites by STxB and the intracellular trafficking of these structures. RESULTS: We demonstrate that STxB-spherulites (ST x B-functionalized spherulites) are internalized into HeLa cells in a receptor-dependent manner. The intracellular distribution was studied by confocal microscopy for lipids, ligand and content. We observed an early separation between spherulites and STxB, leading to a late endosomal/lysosomal localization of lipids and content, whereas STxB remained partially at the plasma membrane. CONCLUSIONS: Although recognition of Gb3 is the cause of their specific adhesion to cell membranes, STxB-spherulites do not follow the retrograde transport route. Our results strongly suggest that STxB-spherulites are, at least in part, disrupted at the plasma membrane, leading to lipid and content targeting to the classical endocytic pathway. We discuss how these findings influence the development of innovative delivery strategies.


Assuntos
Toxina Shiga II/metabolismo , Vesículas Transportadoras/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Células HeLa , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Microscopia Confocal , Transporte Proteico , Toxina Shiga II/genética , Vesículas Transportadoras/genética , Triexosilceramidas/genética , Triexosilceramidas/metabolismo
16.
Appl Spectrosc ; 60(6): 584-91, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16808858

RESUMO

We mapped the space-time distribution of stationary and swarmer cells within a growing Proteus mirabilis colony by infrared (IR) microspectroscopy. Colony mapping was performed at different positions between the inoculum and the periphery with a discrete microscope-mounted IR sensor, while continuous monitoring at a fixed location over time used an optical fiber based IR-attenuated total reflection (ATR) sensor, or "optrode." Phenotypes within a single P. mirabilis population relied on identification of functional determinants (producing unique spectral signals) that reflect differences in macromolecular composition associated with cell differentiation. Inner swarm colony domains are spectrally homogeneous, having patterns similar to those produced by the inoculum. Outer domains composed of active swarmer cells exhibit spectra distinguishable at multiple wavelengths dominated by polysaccharides. Our real-time observations agree with and extend earlier reports indicating that motile swarmer cells are restricted to a narrow (approximately 3 mm) annulus at the colony edge. This study thus validates the use of an IR optrode for real-time and noninvasive monitoring of biofilms and other bacterial surface populations.


Assuntos
Biofilmes/crescimento & desenvolvimento , Contagem de Colônia Microbiana/métodos , Interpretação de Imagem Assistida por Computador/instrumentação , Microscopia Confocal/instrumentação , Proteus mirabilis/citologia , Proteus mirabilis/fisiologia , Espectrofotometria Infravermelho/instrumentação , Sistemas Computacionais , Análise Discriminante , Desenho de Equipamento , Análise de Falha de Equipamento , Tecnologia de Fibra Óptica/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Fibras Ópticas , Proteus mirabilis/isolamento & purificação , Espectrofotometria Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...