Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 662025, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868356

RESUMO

Fusarium Head Blight (FHB) is a cereal disease caused primarily by the ascomycete fungus Fusarium graminearum with public health issues due to the production of mycotoxins including deoxynivalenol (DON). Genetic resistance is an efficient protection means and numerous quantitative trait loci have been identified, some of them related to the production of resistance metabolites. In this study, we have functionally characterized the Brachypodium distachyon BdCYP711A29 gene encoding a cytochrome P450 monooxygenase (CYP). We showed that BdCYP711A29 belongs to an oligogenic family of five members. However, following infection by F. graminearum, BdCYP711A29 is the only copy strongly transcriptionally induced in a DON-dependent manner. The BdCYP711A29 protein is homologous to the Arabidopsis thaliana MAX1 and Oryza sativa MAX1-like CYPs representing key components of the strigolactone biosynthesis. We show that BdCYP711A29 is likely involved in orobanchol biosynthesis. Alteration of the BdCYP711A29 sequence or expression alone does not modify plant architecture, most likely because of functional redundancy with the other copies. B. distachyon lines overexpressing BdCYP711A29 exhibit an increased susceptibility to F. graminearum, although no significant changes in defense gene expression were detected. We demonstrate that both orobanchol and exudates of Bd711A29 overexpressing lines stimulate the germination of F. graminearum macroconidia. We therefore hypothesize that orobanchol is a susceptibility factor to FHB.

2.
Plant Cell Physiol ; 62(4): 610-623, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-33508105

RESUMO

In maize, nitrate regulates root development thanks to the coordinated action of many players. In this study, the involvement of strigolactones (SLs) and auxin as putative components of the nitrate regulation of lateral root (LR) was investigated. To this aim, the endogenous SL content of maize root in response to nitrate was assessed by liquid chromatography with tandem mass Spectrometry (LC-MS/MS) and measurements of LR density in the presence of analogues or inhibitors of auxin and SLs were performed. Furthermore, an untargeted RNA-sequencing (RNA-seq)-based approach was used to better characterize the participation of auxin and SLs to the transcriptional signature of maize root response to nitrate. Our results suggested that N deprivation induces zealactone and carlactonoic acid biosynthesis in root, to a higher extent if compared to P-deprived roots. Moreover, data on LR density led to hypothesize that the induction of LR development early occurring upon nitrate supply involves the inhibition of SL biosynthesis, but that the downstream target of SL shutdown, besides auxin, also includes additional unknown players. Furthermore, RNA-seq results provided a set of putative markers for the auxin- or SL-dependent action of nitrate, meanwhile also allowing to identify novel components of the molecular regulation of maize root response to nitrate. Globally, the existence of at least four different pathways was hypothesized: one dependent on auxin, a second one mediated by SLs, a third deriving from the SL-auxin interplay, and a last one attributable to nitrate itself through further downstream signals. Further work will be necessary to better assess the reliability of the model proposed.


Assuntos
Compostos Heterocíclicos com 3 Anéis/metabolismo , Ácidos Indolacéticos/metabolismo , Lactonas/metabolismo , Nitratos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação , Hexanonas/farmacologia , Nitratos/farmacologia , Nitrogênio/metabolismo , Orobanchaceae/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Análise de Sequência de RNA , Espectrometria de Massas em Tandem , Triazóis/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/metabolismo
3.
Sci Rep ; 10(1): 11268, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647331

RESUMO

Programmed cell death (PCD) is essential for several aspects of plant life. We previously identified the mips1 mutant of Arabidopsis thaliana, which is deficient for the enzyme catalysing myo-inositol synthesis, and that displays light-dependent formation of lesions on leaves due to Salicylic Acid (SA) over-accumulation. Rationale of this work was to identify novel regulators of plant PCD using a genetic approach. A screen for secondary mutations that abolish the mips1 PCD phenotype identified a mutation in the BIG gene, encoding a factor of unknown molecular function that was previously shown to play pleiotropic roles in plant development and defence. Physiological analyses showed that BIG is required for lesion formation in mips1 via SA-dependant signalling. big mutations partly rescued transcriptomic and metabolomics perturbations as stress-related phytohormones homeostasis. In addition, since loss of function of the ceramide synthase LOH2 was not able to abolish cell death induction in mips1, we show that PCD induction is not fully dependent of sphingolipid accumulation as previously suggested. Our results provide further insights into the role of the BIG protein in the control of MIPS1-dependent cell death and also into the impact of sphingolipid homeostasis in this pathway.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a Calmodulina/genética , Inositol/metabolismo , Ácido Salicílico/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Análise por Conglomerados , Epistasia Genética , Homeostase , Mutação , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo
4.
J Mass Spectrom ; 54(10): 791-801, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31652381

RESUMO

Supercritical fluid chromatography (SFC) has experienced a particular revival in recent years thanks to the development of robust and efficient commercial systems. Because of its physico-chemical properties, supercritical carbon dioxide (CO2 ) mixed with cosolvents and additives is particularly suitable for SFC to allow the elution of compounds of different polarities and more particularly complex lipids. Hyphenation with mass spectrometry (MS) is increasingly described in the literature but still requires many further developments in order to be as user-friendly as coupling with liquid chromatography. The basic concepts of SFC and MS hyphenation will be first considered. Then a representative example of method development in lipidomics will be introduced. In conclusion, the challenges and future needs in this field of research will be discussed.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Lipidômica/métodos , Lipídeos/análise , Espectrometria de Massas em Tandem/métodos , Acetatos/química , Técnicas Biossensoriais , Dióxido de Carbono/química , Limite de Detecção , Reprodutibilidade dos Testes , Solventes/química
5.
Biotechnol Lett ; 41(3): 427-442, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30661155

RESUMO

OBJECTIVES: The aim of this study was to develop a Trifolium pratense hairy root (HR) production protocol and select HR lines with high isoflavone yield following elicitor treatments. RESULTS: We obtained 13 independent HR lines, producing approximately three times more isoflavonoids than seedlings (3.3 mg/g dry weight) and in which 27 isoflavonoids were detected. Each HR line had its own isoflavonoid profile. These lines produced as major components daidzein, genistein, formononetin and biochanin A. Sucrose, salicylic acid (SA), yeast extract (YE) and flagellin 22 (flg22) were tested as elicitors. Using SA 140 mg/L, allowed the maximum isoflavonoid production in plantlets (11.9 mg/g dry weight) but reduced root growth, possibly as a result of its toxicity. The highest isoflavone production in HR (27.9 mg/g dry weight) was obtained using sucrose 60 g/L, for 3.5 days. CONCLUSION: This work reports the high production of various isoflavonoids with T. pratense elicited HR cultures.


Assuntos
Isoflavonas/metabolismo , Trifolium/metabolismo , Meios de Cultura/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Ácido Salicílico/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Trifolium/crescimento & desenvolvimento
6.
Phytochem Anal ; 29(1): 59-68, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28851101

RESUMO

INTRODUCTION: Strigolactones (SLs) are important plant hormones. They are difficult to analyse because they occur in very small concentrations especially in comparison with other plant hormones and other substances can interfere with their detection. OBJECTIVE: To develop a procedure for the extraction, purification and quantification of SLs from plant roots. METHODOLOGY: Samples were prepared by extraction of plant root tissues with ethyl acetate. Then the extracts were further purified with silica column chromatography. The natural SLs in the final extracts were quantified using novel deuterium labelled SLs. The results of the methodology were compared with those of the procedure of Yoneyama and coworkers. RESULTS: This procedure required about 1-g root samples to detect and quantify simultaneously the SLs (orobanchyl acetate and fabacyl acetate) concentration with high reliability. CONCLUSION: A method was developed for determining endogenous fabacyl acetate and orobanchyl acetate in plant tissue based on novel deuterium labelled standards. A method of orobanchol quantification using a synthetic SL GR24 as internal standard was proposed. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Cromatografia Líquida/métodos , Deutério , Marcação por Isótopo , Lactonas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Pisum sativum/química , Raízes de Plantas/química , Reprodutibilidade dos Testes
7.
ChemSusChem ; 11(2): 439-448, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29048734

RESUMO

The demethylation of lignin in ionic liquids (ILs) was investigated by using pure lignin model monomers and dimers together with dioxane-isolated lignins from poplar, miscanthus, and maize. Different methylimidazolium ILs were compared and the samples were treated with two different heating processes: microwave irradiation and conventional heating in a sealed tube. The conversion yield and influence of the treatment on the lignin structure were assessed by 31 P NMR spectroscopy, size-exclusion chromatography, and thioacidolysis. The acidic methylimidazolium IL [HMIM]Br was shown to be an effective combination of solvent and reagent for the demethylation and depolymerization of lignin. The relatively mild reaction conditions, the clean work-up, and the ability to reuse the IL makes the described procedure an attractive and new green method for the conversion of lignin to produce phenol-rich lignin oligomers.


Assuntos
Química Verde/métodos , Imidazóis/química , Indicadores e Reagentes/química , Líquidos Iônicos/química , Lignina/química , Cromatografia em Gel , Desmetilação , Hidrólise , Espectroscopia de Ressonância Magnética/métodos , Micro-Ondas , Poaceae/química , Polimerização , Populus/química , Zea mays/química
8.
J Nat Prod ; 80(10): 2620-2629, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28925702

RESUMO

A supercritical fluid chromatography-based targeted purification procedure using tandem mass spectrometry and molecular networking was developed to analyze, annotate, and isolate secondary metabolites from complex plant extract mixture. This approach was applied for the targeted isolation of new antiviral diterpene esters from Euphorbia semiperfoliata whole plant extract. The analysis of bioactive fractions revealed that unknown diterpene esters, including jatrophane esters and phorbol esters, were present in the samples. The purification procedure using semipreparative supercritical fluid chromatography led to the isolation and identification of two new jatrophane esters (13 and 14) and one known (15) and three new 4-deoxyphorbol esters (16-18). The structure and absolute configuration of compound 16 were confirmed by X-ray crystallography. This compound was found to display antiviral activity against Chikungunya virus (EC50 = 0.45 µM), while compound 15 proved to be a potent and selective inhibitor of HIV-1 replication in a recombinant virus assay (EC50 = 13 nM). This study showed that a supercritical fluid chromatography-based protocol and molecular networking can facilitate and accelerate the discovery of bioactive small molecules by targeting molecules of interest, while minimizing the use of toxic solvents.


Assuntos
Antivirais/isolamento & purificação , Antivirais/farmacologia , Cromatografia com Fluido Supercrítico/métodos , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Euphorbia/química , Espectrometria de Massas em Tandem/métodos , Antivirais/química , Vírus Chikungunya/efeitos dos fármacos , Cristalografia por Raios X , Diterpenos/química , HIV-1/efeitos dos fármacos , Conformação Molecular , Estrutura Molecular , Extratos Vegetais/química , Replicação Viral/efeitos dos fármacos
9.
Plant J ; 91(3): 371-393, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28390103

RESUMO

Despite a general view that asparagine synthetase generates asparagine as an amino acid for long-distance transport of nitrogen to sink organs, its role in nitrogen metabolic pathways in floral organs during seed nitrogen filling has remained undefined. We demonstrate that the onset of pollination in Arabidopsis induces selected genes for asparagine metabolism, namely ASN1 (At3g47340), GLN2 (At5g35630), GLU1 (At5g04140), AapAT2 (At5g19950), ASPGA1 (At5g08100) and ASPGB1 (At3g16150), particularly at the ovule stage (stage 0), accompanied by enhanced asparagine synthetase protein, asparagine and total amino acids. Immunolocalization confined asparagine synthetase to the vascular cells of the silique cell wall and septum, but also to the outer and inner seed integuments, demonstrating the post-phloem transport of asparagine in these cells to developing embryos. In the asn1 mutant, aberrant embryo cell divisions in upper suspensor cell layers from globular to heart stages assign a role for nitrogen in differentiating embryos within the ovary. Induction of asparagine metabolic genes by light/dark and nitrate supports fine shifts of nitrogen metabolic pathways. In transgenic Arabidopsis expressing promoterCaMV35S ::ASN1 fusion, marked metabolomics changes at stage 0, including a several-fold increase in free asparagine, are correlated to enhanced seed nitrogen. However, specific promoterNapin2S ::ASN1 expression during seed formation and a six-fold increase in asparagine toward the desiccation stage result in wild-type seed nitrogen, underlining that delayed accumulation of asparagine impairs the timing of its use by releasing amide and amino nitrogen. Transcript and metabolite profiles in floral organs match the carbon and nitrogen partitioning to generate energy via the tricarboxylic acid cycle, GABA shunt and phosphorylated serine synthetic pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Aspartato-Amônia Ligase/metabolismo , Nitrogênio/metabolismo , Sementes/enzimologia , Sementes/metabolismo , Aminoácidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Aspartato-Amônia Ligase/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Floema/enzimologia , Floema/genética , Floema/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética
10.
Mol Plant Pathol ; 18(7): 937-948, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27399963

RESUMO

On microbial attack, plants can detect invaders and activate plant innate immunity. For the detection of pathogen molecules or cell wall damage, plants employ receptors that trigger the activation of defence responses. Cell surface proteins that belong to large families of lectin receptor kinases are candidates to function as immune receptors. Here, the function of LecRK-I.9 (At5g60300), a legume-type lectin receptor kinase involved in cell wall-plasma membrane contacts and in extracellular ATP (eATP) perception, was studied through biochemical, gene expression and reverse genetics approaches. In Arabidopsis thaliana, LecRK-I.9 expression is rapidly, highly and locally induced on inoculation with avirulent strains of Pseudomonas syringae pv. tomato (Pst). Two allelic lecrk-I.9 knock-out mutants showed decreased resistance to Pst. Conversely, over-expression of LecRK-I.9 led to increased resistance to Pst. The analysis of defence gene expression suggests an alteration of both the salicylic acid (SA) and jasmonic acid (JA) signalling pathways. In particular, LecRK-I.9 expression during plant-pathogen interaction was dependent on COI1 (CORONATINE INSENSITIVE 1) and JAR1 (JASMONATE RESISTANT 1) components, and JA-responsive transcription factors (TFs) showed altered levels of expression in plants over-expressing LecRK-I.9. A similar misregulation of these TFs was obtained by JA treatment. This study identified LecRK-I.9 as necessary for full resistance to Pst and demonstrated its involvement in the control of defence against pathogens through a regulation of JA signalling components. The role of LecRK-I.9 is discussed with regard to the potential molecular mechanisms linking JA signalling to cell wall damage and/or eATP perception.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Ciclopentanos/metabolismo , Resistência à Doença , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo , Pseudomonas syringae/fisiologia , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Vias Biossintéticas/genética , Morte Celular/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Glucuronidase/metabolismo , Fenótipo , Doenças das Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Pseudomonas syringae/patogenicidade , Virulência
11.
Nat Commun ; 7: 13026, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713409

RESUMO

Expansion of the cytochrome P450 gene family is often proposed to have a critical role in the evolution of metabolic complexity, in particular in microorganisms, insects and plants. However, the molecular mechanisms underlying the evolution of this complexity are poorly understood. Here we describe the evolutionary history of a plant P450 retrogene, which emerged and underwent fixation in the common ancestor of Brassicales, before undergoing tandem duplication in the ancestor of Brassicaceae. Duplication leads first to gain of dual functions in one of the copies. Both sister genes are retained through subsequent speciation but eventually return to a single copy in two of three diverging lineages. In the lineage in which both copies are maintained, the ancestral functions are split between paralogs and a novel function arises in the copy under relaxed selection. Our work illustrates how retrotransposition and gene duplication can favour the emergence of novel metabolic functions.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular , Fabaceae/genética , Genes de Plantas/genética , Turnera/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fabaceae/metabolismo , Duplicação Gênica/genética , Variação Genética/genética , Retroelementos/genética , Turnera/metabolismo
12.
PLoS One ; 10(10): e0138276, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26457678

RESUMO

Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Citocininas/biossíntese , Alquil e Aril Transferases/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular , Cromatina/metabolismo , DNA de Plantas/genética , Epigênese Genética , Loci Gênicos/genética , Histonas/metabolismo , Meristema/crescimento & desenvolvimento
13.
J Exp Bot ; 66(9): 2569-82, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25873679

RESUMO

Sugar has only recently been identified as a key player in triggering bud outgrowth, while hormonal control of bud outgrowth is already well established. To get a better understanding of sugar control, the present study investigated how sugar availability modulates the hormonal network during bud outgrowth in Rosa hybrida. Other plant models, for which mutants are available, were used when necessary. Buds were grown in vitro to manipulate available sugars. The temporal patterns of the hormonal regulatory network were assessed in parallel with bud outgrowth dynamics. Sucrose determined bud entrance into sustained growth in a concentration-dependent manner. Sustained growth was accompanied by sustained auxin production in buds, and sustained auxin export in a DR5::GUS-expressing pea line. Several events occurred ahead of sucrose-stimulated bud outgrowth. Sucrose upregulated early auxin synthesis genes (RhTAR1, RhYUC1) and the auxin efflux carrier gene RhPIN1, and promoted PIN1 abundance at the plasma membrane in a pPIN1::PIN1-GFP-expressing tomato line. Sucrose downregulated both RwMAX2, involved in the strigolactone-transduction pathway, and RhBRC1, a repressor of branching, at an early stage. The presence of sucrose also increased stem cytokinin content, but sucrose-promoted bud outgrowth was not related to that pathway. In these processes, several non-metabolizable sucrose analogues induced sustained bud outgrowth in R. hybrida, Pisum sativum, and Arabidopsis thaliana, suggesting that sucrose was involved in a signalling pathway. In conclusion, we identified potential hormonal candidates for bud outgrowth control by sugar. They are central to future investigations aimed at disentangling the processes that underlie regulation of bud outgrowth by sugar.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Rosa/crescimento & desenvolvimento , Sacarose/metabolismo , Transporte Biológico , Citocininas/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosa/genética , Rosa/metabolismo , Transdução de Sinais
14.
Plant J ; 80(2): 230-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25065551

RESUMO

Nitrogen is a key mineral nutrient playing a crucial role in plant growth and development. Understanding the mechanisms of nitrate uptake from the soil and distribution through the plant in response to nitrogen starvation is an important step on the way to improve nitrogen uptake and utilization efficiency for better growth and productivity of plants, and to prevent negative effects of nitrogen fertilizers on the environment and human health. In this study, we show that Arabidopsis NITRATE TRANSPORTER 2.5 (NRT2.5) is a plasma membrane-localized high-affinity nitrate transporter playing an essential role in adult plants under severe nitrogen starvation. NRT2.5 expression is induced under nitrogen starvation and NRT2.5 becomes the most abundant transcript amongst the seven NRT2 family members in shoots and roots of adult plants after long-term starvation. GUS reporter analyses showed that NRT2.5 is expressed in the epidermis and the cortex of roots at the root hair zone and in minor veins of mature leaves. Reduction of NRT2.5 expression resulted in a decrease in high-affinity nitrate uptake without impacting low-affinity uptake. In the background of the high-affinity nitrate transporter mutant nrt2.4, an nrt2.5 mutation reduced nitrate levels in the phloem of N-starved plants further than in the single nrt2.4 mutants. Growth analyses of multiple mutants between NRT2.1, NRT2.2, NRT2.4, and NRT2.5 revealed that NRT2.5 is required to support growth of nitrogen-starved adult plants by ensuring the efficient uptake of nitrate collectively with NRT2.1, NRT2.2 and NRT2.4 and by taking part in nitrate loading into the phloem during nitrate remobilization.


Assuntos
Proteínas de Transporte de Ânions/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo
15.
Plant Cell Physiol ; 55(9): 1646-59, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25008975

RESUMO

Among secondary metabolites, flavonoids are particularly important for the plant life cycle and could be beneficial for human health. The study of Arabidopsis thaliana transparent testa mutants showed that seed flavonoids are important for environmental adaptation, reactive oxygen species homeostasis, dormancy and longevity. Compared with Arabidopsis and maize (Zea mays L.), far less research has been conducted on rice (Oryza sativa L.) particularly for cultivars with non-pigmented seeds. In this study, we describe the localization, nature and relative abundance of flavonoids in mature and germinated non-pigmented Nipponbare seeds using a combination of confocal microscopy, mass spectrometry and gene expression analysis. The mature seed exclusively accumulates flavones mostly in the embryo and to a lesser extent in the pericarp/testa. Due to the variety of flavone conjugation patterns, 21 different flavones were identified, including sulfated flavones never mentioned before in cereals. Schaftoside (apigenin-6-C-glucoside-8-C-arabinoside) and its two isomers represent nearly 50% of all rice seed flavones and are the only flavonoids accumulated in the pericarp/testa seed compartment. These 21 conjugated flavones showed a very stable profile during rice seed germination sensu stricto, while expression of key flavone synthesis genes strongly increases before the completion of germination. We discuss the potential roles of these rice seed flavones in a seed biology context.


Assuntos
Flavonas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Sementes/metabolismo , Cromatografia Líquida , Flavonas/química , Flavonas/isolamento & purificação , Germinação , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/química , Oryza/genética , Oryza/ultraestrutura , RNA de Plantas/genética , Sementes/química , Sementes/genética , Sementes/ultraestrutura , Espectrometria de Massas em Tandem , Água/fisiologia
16.
PLoS One ; 9(6): e99343, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24914891

RESUMO

Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in the basal expression of the salicylic acid (SA)- and jasmonic acid (JA)- dependent defense marker genes PR1 and PDF1.2, respectively. Whereas the expression of genes involved in SA and JA biosynthesis and signaling was also affected in the lif2-1 mutant, no change in SA and JA hormonal contents was detected. In addition, the composition of glucosinolates, a class of defense-related secondary metabolites, was altered in the lif2-1 mutant in the absence of pathogen challenge. The lif2-1 mutant exhibited reduced susceptibility to the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic ascomycete Botrytis cinerea. Furthermore, the lif2-1 sid2-2 double mutant was less susceptible than the wild type to P. syringae infection, suggesting that the lif2 response to pathogens was independent of SA accumulation. Together, our data suggest that lif2-1 exhibits a basal primed defense state, resulting from complex deregulation of gene expression, which leads to increased resistance to pathogens with various infection strategies. Therefore, LIF2 may function as a suppressor of cell-autonomous immunity. Similar to its human homolog, NSAP1/SYNCRIP, a trans-acting factor involved in both cellular processes and the viral life cycle, LIF2 may regulate the conflicting aspects of development and defense programs, suggesting that a conserved evolutionary trade-off between growth and defense pathways exists in eukaryotes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Imunidade Vegetal , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Botrytis , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Glucosinolatos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Modelos Biológicos , Mutação/genética , Oxilipinas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Pseudomonas syringae/fisiologia , Proteínas de Ligação a RNA/genética , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico/genética , Transcriptoma/genética
17.
Plant Cell Environ ; 36(2): 328-42, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22789031

RESUMO

We investigated the function of ASN2, one of the three genes encoding asparagine synthetase (EC 6.3.5.4), which is the most highly expressed in vegetative leaves of Arabidopsis thaliana. Expression of ASN2 and parallel higher asparagine content in darkness suggest that leaf metabolism involves ASN2 for asparagine synthesis. In asn2-1 knockout and asn2-2 knockdown lines, ASN2 disruption caused a defective growth phenotype and ammonium accumulation. The asn2 mutant leaves displayed a depleted asparagine and an accumulation of alanine, GABA, pyruvate and fumarate, indicating an alanine formation from pyruvate through the GABA shunt to consume excess ammonium in the absence of asparagine synthesis. By contrast, asparagine did not contribute to photorespiratory nitrogen recycle as photosynthetic net CO(2) assimilation was not significantly different between lines under both 21 and 2% O(2). ASN2 was found in phloem companion cells by in situ hybridization and immunolocalization. Moreover, lack of asparagine in asn2 phloem sap and lowered (15) N flux to sinks, accompanied by the delayed yellowing (senescence) of asn2 leaves, in the absence of asparagine support a specific role of asparagine in phloem loading and nitrogen reallocation. We conclude that ASN2 is essential for nitrogen assimilation, distribution and remobilization (via the phloem) within the plant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Aspartato-Amônia Ligase/metabolismo , Nitrogênio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Aspartato-Amônia Ligase/genética , Transporte Biológico , DNA Bacteriano/genética , Gases/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Metaboloma , Mutagênese Insercional/genética , Mutação/genética , Fenótipo , Floema/enzimologia , Fotossíntese , Folhas de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Plant Cell ; 24(1): 245-58, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22227893

RESUMO

Plants have evolved a variety of mechanisms to adapt to N starvation. NITRATE TRANSPORTER2.4 (NRT2.4) is one of seven NRT2 family genes in Arabidopsis thaliana, and NRT2.4 expression is induced under N starvation. Green fluorescent protein and ß-glucuronidase reporter analyses revealed that NRT2.4 is a plasma membrane transporter expressed in the epidermis of lateral roots and in or close to the shoot phloem. The spatiotemporal expression pattern of NRT2.4 in roots is complementary with that of the major high-affinity nitrate transporter NTR2.1. Functional analysis in Xenopus laevis oocytes and in planta showed that NRT2.4 is a nitrate transporter functioning in the high-affinity range. In N-starved nrt2.4 mutants, nitrate uptake under low external supply and nitrate content in shoot phloem exudates was decreased. In the absence of NRT2.1 and NRT2.2, loss of function of NRT2.4 (triple mutants) has an impact on biomass production under low nitrate supply. Together, our results demonstrate that NRT2.4 is a nitrate transporter that has a role in both roots and shoots under N starvation.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitrogênio/metabolismo , Proteínas de Transporte de Ânions/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Microscopia Confocal , Transportadores de Nitrato , Nitrogênio/deficiência
19.
Plant Physiol ; 158(1): 225-38, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22045922

RESUMO

The function of PsBRC1, the pea (Pisum sativum) homolog of the maize (Zea mays) TEOSINTE BRANCHED1 and the Arabidopsis (Arabidopsis thaliana) BRANCHED1 (AtBRC1) genes, was investigated. The pea Psbrc1 mutant displays an increased shoot-branching phenotype, is able to synthesize strigolactone (SL), and does not respond to SL application. The level of pleiotropy of the SL-deficient ramosus1 (rms1) mutant is higher than in the Psbrc1 mutant, rms1 exhibiting a relatively dwarf phenotype and more extensive branching at upper nodes. The PsBRC1 gene is mostly expressed in the axillary bud and is transcriptionally up-regulated by direct application of the synthetic SL GR24 and down-regulated by the cytokinin (CK) 6-benzylaminopurine. The results suggest that PsBRC1 may have a role in integrating SL and CK signals and that SLs act directly within the bud to regulate its outgrowth. However, the Psbrc1 mutant responds to 6-benzylaminopurine application and decapitation by increasing axillary bud length, implicating a PsBRC1-independent component of the CK response in sustained bud growth. In contrast to other SL-related mutants, the Psbrc1 mutation does not cause a decrease in the CK zeatin riboside in the xylem sap or a strong increase in RMS1 transcript levels, suggesting that the RMS2-dependent feedback is not activated in this mutant. Surprisingly, the double rms1 Psbrc1 mutant displays a strong increase in numbers of branches at cotyledonary nodes, whereas branching at upper nodes is not significantly higher than the branching in rms1. This phenotype indicates a localized regulation of branching at these nodes specific to pea.


Assuntos
Lactonas/metabolismo , Pisum sativum/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo , Compostos de Benzil , Citocininas/genética , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Cinetina/farmacologia , Dados de Sequência Molecular , Mutação , Pisum sativum/efeitos dos fármacos , Pisum sativum/genética , Pisum sativum/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Purinas , Transdução de Sinais/genética , Regulação para Cima , Xilema/genética , Xilema/metabolismo
20.
J Exp Bot ; 62(2): 605-15, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20943826

RESUMO

The modulation of primary nitrogen metabolism by water deficit through ABA-dependent and ABA-independent pathways was investigated in the model legume Medicago truncatula. Growth and glutamate metabolism were followed in young seedlings growing for short periods in darkness and submitted to a moderate water deficit (simulated by polyethylene glycol; PEG) or treated with ABA. Water deficit induced an ABA accumulation, a reduction of axis length in an ABA-dependent manner, and an inhibition of water uptake/retention in an ABA-independent manner. The PEG-induced accumulation of free amino acids (AA), principally asparagine and proline, was mimicked by exogenous ABA treatment. This suggests that AA accumulation under water deficit may be an ABA-induced osmolyte accumulation contributing to osmotic adjustment. Alternatively, this accumulation could be just a consequence of a decreased nitrogen demand caused by reduced extension, which was triggered by water deficit and exogenous ABA treatment. Several enzyme activities involved in glutamate metabolism and genes encoding cytosolic glutamine synthetase (GS1b; EC 6.3.1.2.), glutamate dehydrogenase (GDH3; EC 1.4.1.1.), and asparagine synthetase (AS; EC 6.3.1.1.) were up-regulated by water deficit but not by ABA, except for a gene encoding Δ(1)-pyrroline-5-carboxylate synthetase (P5CS; EC not assigned). Thus, ABA-dependent and ABA-independent regulatory systems would seem to exist, differentially controlling development, water content, and nitrogen metabolism under water deficit.


Assuntos
Ácido Abscísico/farmacologia , Germinação/efeitos dos fármacos , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/metabolismo , Nitrogênio/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Água/metabolismo , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...