Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(13): 7680-7696, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35801857

RESUMO

Deinococcus radiodurans is a spherical bacterium well-known for its outstanding resistance to DNA-damaging agents. Exposure to such agents leads to drastic changes in the transcriptome of D. radiodurans. In particular, four Deinococcus-specific genes, known as DNA Damage Response genes, are strongly up-regulated and have been shown to contribute to the resistance phenotype of D. radiodurans. One of these, DdrC, is expressed shortly after exposure to γ-radiation and is rapidly recruited to the nucleoid. In vitro, DdrC has been shown to compact circular DNA, circularize linear DNA, anneal complementary DNA strands and protect DNA from nucleases. To shed light on the possible functions of DdrC in D. radiodurans, we determined the crystal structure of the domain-swapped DdrC dimer at a resolution of 2.5 Šand further characterized its DNA binding and compaction properties. Notably, we show that DdrC bears two asymmetric DNA binding sites located on either side of the dimer and can modulate the topology and level of compaction of circular DNA. These findings suggest that DdrC may be a DNA damage-induced nucleoid-associated protein that enhances nucleoid compaction to limit the dispersion of the fragmented genome and facilitate DNA repair after exposure to severe DNA damaging conditions.


Assuntos
Proteínas de Bactérias/química , Deinococcus , Proteínas de Bactérias/metabolismo , Dano ao DNA , Reparo do DNA , DNA Circular/metabolismo , Deinococcus/genética , Deinococcus/metabolismo
2.
Cells ; 10(10)2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34685516

RESUMO

Numerous genes are overexpressed in the radioresistant bacterium Deinococcus radiodurans after exposure to radiation or prolonged desiccation. It was shown that the DdrO and IrrE proteins play a major role in regulating the expression of approximately twenty genes. The transcriptional repressor DdrO blocks the expression of these genes under normal growth conditions. After exposure to genotoxic agents, the IrrE metalloprotease cleaves DdrO and relieves gene repression. At present, many questions remain, such as the number of genes regulated by DdrO. Here, we present the first ChIP-seq analysis performed at the genome level in Deinococcus species coupled with RNA-seq, which was achieved in the presence or not of DdrO. We also resequenced our laboratory stock strain of D. radiodurans R1 ATCC 13939 to obtain an accurate reference for read alignments and gene expression quantifications. We highlighted genes that are directly under the control of this transcriptional repressor and showed that the DdrO regulon in D. radiodurans includes numerous other genes than those previously described, including DNA and RNA metabolism proteins. These results thus pave the way to better understand the radioresistance pathways encoded by this bacterium and to compare the stress-induced responses mediated by this pair of proteins in diverse bacteria.


Assuntos
Deinococcus/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulon/genética , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/metabolismo , Dano ao DNA/genética , Deinococcus/genética , Genômica , Regulon/fisiologia
3.
Front Microbiol ; 11: 1253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625182

RESUMO

Horizontal gene transfer is a major driver of bacterial evolution and adaptation to environmental stresses, occurring notably via transformation of naturally competent organisms. The Deinococcus radiodurans bacterium, characterized by its extreme radioresistance, is also naturally competent. Here, we investigated the role of D. radiodurans players involved in different steps of natural transformation. First, we identified the factors (PilQ, PilD, type IV pilins, PilB, PilT, ComEC-ComEA, and ComF) involved in DNA uptake and DNA translocation across the external and cytoplasmic membranes and showed that the DNA-uptake machinery is similar to that described in the Gram negative bacterium Vibrio cholerae. Then, we studied the involvement of recombination and DNA repair proteins, RecA, RecF, RecO, DprA, and DdrB into the DNA processing steps of D. radiodurans transformation by plasmid and genomic DNA. The transformation frequency of the cells devoid of DprA, a highly conserved protein among competent species, strongly decreased but was not completely abolished whereas it was completely abolished in ΔdprA ΔrecF, ΔdprA ΔrecO, and ΔdprA ΔddrB double mutants. We propose that RecF and RecO, belonging to the recombination mediator complex, and DdrB, a specific deinococcal DNA binding protein, can replace a function played by DprA, or alternatively, act at a different step of recombination with DprA. We also demonstrated that a ΔdprA mutant is as resistant as wild type to various doses of γ-irradiation, suggesting that DprA, and potentially transformation, do not play a major role in D. radiodurans radioresistance.

4.
PLoS One ; 12(5): e0177751, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542368

RESUMO

The bacterium Deinococcus radiodurans possesses a set of Deinococcus-specific genes highly induced after DNA damage. Among them, ddrC (dr0003) was recently re-annotated, found to be in the inverse orientation and called A2G07_00380. Here, we report the first in vivo and in vitro characterization of the corrected DdrC protein to better understand its function in irradiated cells. In vivo, the ΔddrC null mutant is sensitive to high doses of UV radiation and the ddrC deletion significantly increases UV-sensitivity of ΔuvrA or ΔuvsE mutant strains. We show that the expression of the DdrC protein is induced after γ-irradiation and is under the control of the regulators, DdrO and IrrE. DdrC is rapidly recruited into the nucleoid of the irradiated cells. In vitro, we show that DdrC is able to bind single- and double-stranded DNA with a preference for the single-stranded DNA but without sequence or shape specificity and protects DNA from various nuclease attacks. DdrC also condenses DNA and promotes circularization of linear DNA. Finally, we show that the purified protein exhibits a DNA strand annealing activity. Altogether, our results suggest that DdrC is a new DNA binding protein with pleiotropic activities. It might maintain the damaged DNA fragments end to end, thus limiting their dispersion and extensive degradation after exposure to ionizing radiation. DdrC might also be an accessory protein that participates in a single strand annealing pathway whose importance in DNA repair becomes apparent when DNA is heavily damaged.


Assuntos
Proteínas de Bactérias/metabolismo , Dano ao DNA , Deinococcus/genética , Deinococcus/metabolismo , Proteínas de Bactérias/química , Reparo do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Deinococcus/efeitos da radiação , Relação Dose-Resposta à Radiação , Raios gama/efeitos adversos , Deleção de Genes , Plasmídeos/genética , Multimerização Proteica , Estrutura Quaternária de Proteína , Raios Ultravioleta/efeitos adversos
5.
mSphere ; 1(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303692

RESUMO

PprA, a radiation-induced Deinococcus-specific protein, was previously shown to be required for cell survival and accurate chromosome segregation after exposure to ionizing radiation. Here, we used an in vivo approach to determine, by shotgun proteomics, putative PprA partners coimmunoprecipitating with PprA when cells were exposed to gamma rays. Among them, we found the two subunits of DNA gyrase and, thus, chose to focus our work on characterizing the activities of the deinococcal DNA gyrase in the presence or absence of PprA. Loss of PprA rendered cells hypersensitive to novobiocin, an inhibitor of the B subunit of DNA gyrase. We showed that treatment of bacteria with novobiocin resulted in induction of the radiation desiccation response (RDR) regulon and in defects in chromosome segregation that were aggravated by the absence of PprA. In vitro, the deinococcal DNA gyrase, like other bacterial DNA gyrases, possesses DNA negative supercoiling and decatenation activities. These two activities are inhibited in vitro by novobiocin and nalidixic acid, whereas PprA specifically stimulates the decatenation activity of DNA gyrase. Together, these results suggest that PprA plays a major role in chromosome decatenation via its interaction with the deinococcal DNA gyrase when D. radiodurans cells are recovering from exposure to ionizing radiation. IMPORTANCE D. radiodurans is one of the most radiation-resistant organisms known. This bacterium is able to cope with high levels of DNA lesions generated by exposure to extreme doses of ionizing radiation and to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Here, we identified partners of PprA, a radiation-induced Deinococcus-specific protein, previously shown to be required for radioresistance. Our study leads to three main findings: (i) PprA interacts with DNA gyrase after irradiation, (ii) treatment of cells with novobiocin results in defects in chromosome segregation that are aggravated by the absence of PprA, and (iii) PprA stimulates the decatenation activity of DNA gyrase. Our results extend the knowledge of how D. radiodurans cells survive exposure to extreme doses of gamma irradiation and point out the link between DNA repair, chromosome segregation, and DNA gyrase activities in the radioresistant D. radiodurans bacterium.

6.
Microbiology (Reading) ; 161(12): 2410-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26385459

RESUMO

HU proteins have an important architectural role in nucleoid organization in bacteria. Compared with HU of many bacteria, HU proteins from Deinococcus species possess an N-terminal lysine-rich extension similar to the eukaryotic histone H1 C-terminal domain involved in DNA compaction. The single HU gene in Deinococcus radiodurans, encoding DrHU, is required for nucleoid compaction and cell viability. Deinococcus deserti contains three expressed HU genes, encoding DdHU1, DdHU2 and DdHU3. Here, we show that either DdHU1 or DdHU2 is essential in D. deserti. DdHU1 and DdHU2, but not DdHU3, can substitute for DrHU in D. radiodurans, indicating that DdHU3 may have a non-essential function different from DdHU1, DdHU2 and DrHU. Interestingly, the highly abundant DrHU and DdHU1 proteins, and also the less expressed DdHU2, are translated in Deinococcus from leaderless mRNAs, which lack a 5'-untranslated region and, hence, the Shine-Dalgarno sequence. Unexpectedly, cloning the DrHU or DdHU1 gene under control of a strong promoter in an expression plasmid, which results in leadered transcripts, strongly reduced the DrHU and DdHU1 protein level in D. radiodurans compared with that obtained from the natural leaderless gene. We also show that the start codon position for DrHU and DdHU1 should be reannotated, resulting in proteins that are 15 and 4 aa residues shorter than initially reported. The expression level and start codon correction were crucial for functional characterization of HU in Deinococcus.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Deinococcus/genética , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , RNA Mensageiro/genética , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Códon de Iniciação/genética , Códon de Iniciação/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Deinococcus/química , Deinococcus/metabolismo , Dados de Sequência Molecular , RNA Mensageiro/metabolismo , Alinhamento de Sequência
7.
Mol Microbiol ; 96(5): 1069-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25754115

RESUMO

Deinococcus radiodurans is known for its extreme radioresistance. Comparative genomics identified a radiation-desiccation response (RDR) regulon comprising genes that are highly induced after DNA damage and containing a conserved motif (RDRM) upstream of their coding region. We demonstrated that the RDRM sequence is involved in cis-regulation of the RDR gene ddrB in vivo. Using a transposon mutagenesis approach, we showed that, in addition to ddrO encoding a predicted RDR repressor and irrE encoding a positive regulator recently shown to cleave DdrO in Deinococcus deserti, two genes encoding α-keto-glutarate dehydrogenase subunits are involved in ddrB regulation. In wild-type cells, the DdrO cell concentration decreased transiently in an IrrE-dependent manner at early times after irradiation. Using a conditional gene inactivation system, we showed that DdrO depletion enhanced expression of three RDR proteins, consistent with the hypothesis that DdrO acts as a repressor of the RDR regulon. DdrO-depleted cells loose viability and showed morphological changes evocative of an apoptotic-like response, including membrane blebbing, defects in cell division and DNA fragmentation. We propose that DNA repair and apoptotic-like death might be two responses mediated by the same regulators, IrrE and DdrO, but differently activated depending on the persistence of IrrE-dependent DdrO cleavage.


Assuntos
Deinococcus/genética , Deinococcus/efeitos da radiação , Regulação Bacteriana da Expressão Gênica , Regulon , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA , Desidratação , Deinococcus/crescimento & desenvolvimento , Deinococcus/ultraestrutura , Genômica , Complexo Cetoglutarato Desidrogenase/genética , Mutagênese , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína
8.
DNA Repair (Amst) ; 12(4): 265-72, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23403184

RESUMO

Deinococcus radiodurans, one of the most radioresistant organisms known to date is able to reconstruct an intact genome from hundreds of DNA fragments. Here, we investigate the in vivo role of PprA, a radiation-induced Deinococcus specific protein. We report that DNA double strand break repair in cells devoid of PprA and exposed to 3800Gy γ-irradiation takes place efficiently with a delay of only 1h as compared to the wild type, whereas massive DNA synthesis begins 90min after irradiation as in the wild type, a phenotype insufficient to explain the severe radiosensitivity of the ΔpprA mutant. We show that the slow kinetics of reassembly of DNA fragments in a ΔpprA ΔrecA double mutant was the same as that observed in a ΔrecA single mutant demonstrating that PprA does not play a major role in DNA repair through RecA-independent pathways. Using a tagged PprA protein and immunofluorescence microscopy, we show that PprA is recruited onto the nucleoid after γ-irradiation before DNA double strand break repair completion, and then is found as a thread across the septum in dividing cells. Moreover, whereas untreated cells devoid of PprA displayed a wild type morphology, they showed a characteristic cell division abnormality after irradiation not found in other radiosensitive mutants committed to die, as DNA is present equally in the two daughter cells but not separated at the division septum. We propose that PprA may play a crucial role in the control of DNA segregation and/or cell division after DNA double strand break repair.


Assuntos
Proteínas de Bactérias/genética , Divisão Celular/genética , Deinococcus/genética , Raios gama , Proteínas de Bactérias/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Deinococcus/citologia , Deinococcus/efeitos da radiação , Deleção de Genes , Fenótipo , Tolerância a Radiação/genética , Recombinases Rec A/genética , Recombinases Rec A/metabolismo
9.
PLoS One ; 8(2): e56558, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23441204

RESUMO

The bacterium Deinococcus radiodurans exhibits an extreme resistance to ionizing radiation. A small subset of Deinococcus genus-specific genes were shown to be up-regulated upon exposure to ionizing radiation and to play a role in genome reconstitution. These genes include an SSB-like protein called DdrB. Here, we identified a novel protein encoded by the dr1245 gene as an interacting partner of DdrB. A strain devoid of the DR1245 protein is impaired in growth, exhibiting a generation time approximately threefold that of the wild type strain while radioresistance is not affected. We determined the three-dimensional structure of DR1245, revealing a relationship with type III secretion system chaperones and YbjN family proteins. Thus, DR1245 may display some chaperone activity towards DdrB and possibly other substrates.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Deinococcus/metabolismo , Chaperonas Moleculares/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência de Bases , Deinococcus/genética , Deinococcus/crescimento & desenvolvimento , Deinococcus/efeitos da radiação , Modelos Moleculares , Chaperonas Moleculares/química , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Tolerância a Radiação/genética , Alinhamento de Sequência
10.
J Proteomics ; 75(9): 2588-600, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-22446890

RESUMO

Compared to radiation-sensitive bacteria, the nucleoids of radiation-resistant Deinococcus species show a higher degree of compaction. Such a condensed nucleoid may contribute to the extreme radiation resistance of Deinococcus by limiting dispersion of radiation-induced DNA fragments. Architectural proteins may play a role in this high degree of nucleoid compaction, but comparative genomics revealed only a limited number of Deinococcus homologs of known nucleoid-associated proteins (NAPs) from other species such as Escherichia coli. A comparative proteomic approach was used to identify potentially novel proteins from isolated nucleoids of Deinococcus radiodurans and Deinococcus deserti. Proteins in nucleoid enriched fractions were identified and semi-quantified by shotgun proteomics. Based on normalized spectral counts, the histone-like DNA-binding protein HU appeared to be the most abundant among candidate NAPs from both micro-organisms. By immunofluorescence microscopy, D. radiodurans HU and both DNA gyrase subunits were shown to be distributed throughout the nucleoid structure and absent from the cytoplasm. Taken together, our results suggest that D. radiodurans and D. deserti bacteria contain a very low diversity of NAPs, with HU and DNA gyrase being the main proteins involved in the organization of the Deinococcus nucleoids.


Assuntos
Proteínas de Bactérias/química , Deinococcus/genética , Organelas/metabolismo , Proteínas de Bactérias/isolamento & purificação , DNA Girase/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Deinococcus/efeitos da radiação , Organelas/química , Proteômica
11.
DNA Repair (Amst) ; 10(12): 1223-31, 2011 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21968057

RESUMO

The Deinococcus radiodurans bacterium exhibits an extreme resistance to ionizing radiation. Here, we investigated the in vivo role of DdrB, a radiation-induced Deinococcus specific protein that was previously shown to exhibit some in vitro properties akin to those of SSB protein from Escherichia coli but also to promote annealing of single stranded DNA. First we report that the deletion of the C-terminal motif of the DdrB protein, which is similar to the SSB C-terminal motif involved in recruitment to DNA of repair proteins, did neither affect cell radioresistance nor DNA binding properties of purified DdrB protein. We show that, in spite of their different quaternary structure, DdrB and SSB occlude the same amount of ssDNA in vitro. We also show that DdrB is recruited early and transiently after irradiation into the nucleoid to form discrete foci. Absence of DdrB increased the lag phase of the extended synthesis-dependent strand annealing (ESDSA) process, affecting neither the rate of DNA synthesis nor the efficiency of fragment reassembly, as indicated by monitoring DNA synthesis and genome reconstitution in cells exposed to a sub-lethal ionizing radiation dose. Moreover, cells devoid of DdrB were affected in the establishment of plasmid DNA during natural transformation, a process that requires pairing of internalized plasmid single stranded DNA fragments, whereas they were proficient in transformation by a chromosomal DNA marker that integrates into the host chromosome through homologous recombination. Our data are consistent with a model in which DdrB participates in an early step of DNA double strand break repair in cells exposed to very high radiation doses. DdrB might facilitate the accurate assembly of the myriad of small fragments generated by extreme radiation exposure through a single strand annealing (SSA) process to generate suitable substrates for subsequent ESDSA-promoted genome reconstitution.


Assuntos
Proteínas de Bactérias/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , DNA de Cadeia Simples/metabolismo , Deinococcus/metabolismo , Plasmídeos/genética , Transformação Bacteriana , Transporte Ativo do Núcleo Celular/efeitos da radiação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Fragmentação do DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , DNA Bacteriano/biossíntese , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/biossíntese , DNA de Cadeia Simples/genética , Deinococcus/genética , Deinococcus/efeitos da radiação , Mutação , Estrutura Terciária de Proteína , Tolerância a Radiação/genética , Fatores de Tempo , Transformação Bacteriana/efeitos da radiação
12.
Extremophiles ; 13(5): 827-37, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19629621

RESUMO

Deinococcus radiodurans contains a highly condensed nucleoid that remains to be unaltered following the exposure to high doses of gamma-irradiation. Proteins belonging to the structural maintenance of chromosome protein (SMC) family are present in all organisms and were shown to be involved in chromosome condensation, pairing, and/or segregation. Here, we have inactivated the smc gene in the radioresistant bacterium D. radiodurans, and, unexpectedly, found that smc null mutants showed no discernible phenotype except an increased sensitivity to gyrase inhibitors suggesting a role of SMC in DNA folding. A defect in the SMC-like SbcC protein exacerbated the sensitivity to gyrase inhibitors of cells devoid of SMC. We also showed that the D. radiodurans SMC protein forms discrete foci at the periphery of the nucleoid suggesting that SMC could locally condense DNA. The phenotype of smc null mutant leads us to speculate that other, not yet identified, proteins drive the compact organization of the D. radiodurans nucleoid.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA Bacteriano/química , Deinococcus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/genética , DNA Bacteriano/genética , DNA Super-Helicoidal/química , DNA Super-Helicoidal/genética , Deinococcus/genética , Deinococcus/crescimento & desenvolvimento , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Deleção de Genes , Genes Bacterianos , Mutação , Conformação de Ácido Nucleico , Plasmídeos/química , Plasmídeos/genética
13.
J Mol Biol ; 359(3): 805-12, 2006 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16647715

RESUMO

A class of enzymes, called DNA topoisomerases, is responsible for controlling the topological state of cellular DNA. Among these, type IA topoisomerases form a vast family that is present in all living organisms, including higher eukaryotes, in which they play important roles in genome stability. The known 3D structures of three of these enzymes indicate that they share a common toroidal architecture. We previously showed that the toroidal structure could be split off from the core enzyme of Thermotoga maritima topoisomerase I by limited proteolysis. This structure is produced by the association of two tandemly repeated elementary folds in a head-to-tail orientation. By using a combination of structural and sequence data analysis, we show that the elementary fold of about 150 amino acid residues, referred to as the topofold, is likely to be present in the whole topoisomerase IA family. Within each enzyme, the successive topofolds share two conserved sequence motifs located at the base of the ring, and referred to as the MI and MII motifs. However, the overall sequences of the folds have largely diverged. By contrast, secondary and tertiary structures appear remarkably conserved. We suggest that this twofold repeat has evolved by gene duplication/fusion from an ancestral topofold.


Assuntos
DNA Topoisomerases Tipo I/química , Modelos Moleculares , Dobramento de Proteína , Thermotoga maritima/química , Sequência de Aminoácidos , Cristalografia por Raios X , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Análise de Sequência de Proteína
14.
Biochim Biophys Acta ; 1700(2): 161-70, 2004 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-15262225

RESUMO

Using limited proteolysis, we show that the hyperthermophilic topoisomerase I from Thermotoga maritima exhibits a unique hot spot susceptible to proteolytic attack with a variety of proteases. The remaining of the protein is resistant to further proteolysis, which suggests a compact folding of the thermophilic topoisomerase, when compared to its mesophilic Escherichia coli homologue. We further show that a truncated version of the T. maritima enzyme, lacking the last C-terminal 93 amino acids is more susceptible to proteolysis, which suggests that the C-terminal region of the topoisomerase may be important to maintain the compact folding of the enzyme. The hot spot of cleavage is located around amino acids 326-330 and probably corresponds to an exposed loop of the protein, near the active site tyrosine in charge of DNA cleavage and religation. Location of this protease sensitive region in the vicinity of bound DNA is consistent with the partial protection observed in the presence of different DNA substrates. Unexpectedly, although proteolysis splits the enzyme in two halves, each containing part of the motifs involved in catalysis, trypsin-digested topoisomerase I retains full DNA binding, cleavage, and relaxation activities, full thermostability and also the same hydrodynamic and spectral properties as undigested samples. This supports the idea that the two fragments which are generated by proteolysis remain correctly folded and tightly associated after proteolytic cleavage.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Endopeptidases/metabolismo , Thermotoga maritima/enzimologia , Motivos de Aminoácidos , Proteínas de Bactérias , Sítios de Ligação , DNA/metabolismo , DNA Topoisomerases Tipo I/química , Fragmentos de Peptídeos/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...