Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mob DNA ; 13(1): 12, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440097

RESUMO

BACKGROUND: Whiteflies are agricultural pests that cause negative impacts globally to crop yields resulting at times in severe economic losses and food insecurity. The Bemisia tabaci whitefly species complex is the most damaging in terms of its broad crop host range and its ability to serve as vector for over 400 plant viruses. Genomes of whiteflies belonging to this species complex have provided valuable genomic data; however, transposable elements (TEs) within these genomes remain unexplored. This study provides the first accurate characterization of TE content within the B. tabaci species complex. RESULTS: This study identified that an average of 40.61% of the genomes of three whitefly species (MEAM1, MEDQ, and SSA-ECA) consists of TEs. The majority of the TEs identified were DNA transposons (22.85% average) while SINEs (0.14% average) were the least represented. This study also compared the TE content of the three whitefly genomes with three other hemipteran genomes and found significantly more DNA transposons and less LINEs in the whitefly genomes. A total of 63 TE superfamilies were identified to be present across the three whitefly species (39 DNA transposons, six LTR, 16 LINE, and two SINE). The sequences of the identified TEs were clustered which generated 5766 TE clusters. A total of 2707 clusters were identified as uniquely found within the whitefly genomes while none of the generated clusters were from both whitefly and non-whitefly TE sequences. This study is the first to characterize TEs found within different B. tabaci species and has created a standardized annotation workflow that could be used to analyze future whitefly genomes. CONCLUSION: This study is the first to characterize the landscape of TEs within the B. tabaci whitefly species complex. The characterization of these elements within the three whitefly genomes shows that TEs occupy significant portions of B. tabaci genomes, with DNA transposons representing the vast majority. This study also identified TE superfamilies and clusters of TE sequences of potential interest, providing essential information, and a framework for future TE studies within this species complex.

3.
Virol J ; 18(1): 184, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503522

RESUMO

BACKGROUND: The phenylalanine ammonia lyase genes play crucial role in plant response to biotic and abiotic stresses. In this study, we characterized the role of PAL genes in increasing resistance to the Cassava brown streak virus that causes the economically important cassava brown streak disease (CBSD) on cassava in Africa. METHODS: The whole transcriptomes of eight cassava varieties differing in resistance to CBSD were obtained at 1, 5 and 8 weeks after CBSV infection. RESULTS: Analysis of RNA-Seq data identified the overexpression of PAL1, PAL2, cinnamic acid and two chalcone synthase genes in CBSD-resistant cassava varieties, which was subsequently confirmed by RT-qPCR. The exogenous application of Acibenzolar-S-Methyl induced PAL1 gene expression to enhance resistance in the susceptible var. Kalawe. In contrast, the silencing of PAL1 by RNA interference led to increased susceptibility of the resistant var. Kaleso to CBSD. CONCLUSIONS: PAL1 gene of the phenylpropanoid pathway has a major role in inducing resistance to CBSD in cassava plants and its early induction is key for CBSD resistance.


Assuntos
Resistência à Doença , Manihot , Doenças das Plantas , Potyviridae , Resistência à Doença/genética , Manihot/genética , Manihot/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Potyviridae/patogenicidade
4.
Cells ; 10(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34359870

RESUMO

Begomoviruses cause substantial losses to agricultural production, especially in tropical and subtropical regions, and are exclusively transmitted by members of the whitefly Bemisia tabaci species complex. However, the molecular mechanisms underlying the transmission of begomoviruses by their whitefly vector are not clear. In this study, we found that B. tabaci vesicle-associated membrane protein 2 (BtVAMP2) interacts with the coat protein (CP) of tomato yellow leaf curl virus (TYLCV), an emergent begomovirus that seriously impacts tomato production globally. After infection with TYLCV, the transcription of BtVAMP2 was increased. When the BtVAMP2 protein was blocked by feeding with a specific BtVAMP2 antibody, the quantity of TYLCV in B. tabaci whole body was significantly reduced. BtVAMP2 was found to be conserved among the B. tabaci species complex and also interacts with the CP of Sri Lankan cassava mosaic virus (SLCMV). When feeding with BtVAMP2 antibody, the acquisition quantity of SLCMV in whitefly whole body was also decreased significantly. Overall, our results demonstrate that BtVAMP2 interacts with the CP of begomoviruses and promotes their acquisition by whitefly.


Assuntos
Begomovirus/fisiologia , Hemípteros/metabolismo , Hemípteros/virologia , Proteínas de Insetos/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas de Insetos/química , Ligação Proteica , Transcrição Gênica , Proteína 2 Associada à Membrana da Vesícula/química
5.
Parasit Vectors ; 14(1): 75, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482889

RESUMO

BACKGROUND: Mosquito-borne diseases are a global health problem, causing hundreds of thousands of deaths per year. Pathogens are transmitted by mosquitoes feeding on the blood of an infected host and then feeding on a new host. Monitoring mosquito host-choice behaviour can help in many aspects of vector-borne disease control. Currently, it is possible to determine the host species and an individual human host from the blood meal of a mosquito by using genotyping to match the blood profile of local inhabitants. Epidemiological models generally assume that mosquito biting behaviour is random; however, numerous studies have shown that certain characteristics, e.g. genetic makeup and skin microbiota, make some individuals more attractive to mosquitoes than others. Analysing blood meals and illuminating host-choice behaviour will help re-evaluate and optimise disease transmission models. METHODS: We describe a new blood meal assay that identifies the sex of the person that a mosquito has bitten. The amelogenin locus (AMEL), a sex marker located on both X and Y chromosomes, was amplified by polymerase chain reaction in DNA extracted from blood-fed Aedes aegypti and Anopheles coluzzii. RESULTS: AMEL could be successfully amplified up to 24 h after a blood meal in 100% of An. coluzzii and 96.6% of Ae. aegypti, revealing the sex of humans that were fed on by individual mosquitoes. CONCLUSIONS: The method described here, developed using mosquitoes fed on volunteers, can be applied to field-caught mosquitoes to determine the host species and the biological sex of human hosts on which they have blood fed. Two important vector species were tested successfully in our laboratory experiments, demonstrating the potential of this technique to improve epidemiological models of vector-borne diseases. This viable and low-cost approach has the capacity to improve our understanding of vector-borne disease transmission, specifically gender differences in exposure and attractiveness to mosquitoes. The data gathered from field studies using our method can be used to shape new transmission models and aid in the implementation of more effective and targeted vector control strategies by enabling a better understanding of the drivers of vector-host interactions.


Assuntos
Sangue , Comportamento Alimentar/fisiologia , Especificidade de Hospedeiro , Mordeduras e Picadas de Insetos/sangue , Refeições , Análise para Determinação do Sexo/métodos , Amelogenina/genética , Animais , Feminino , Humanos , Masculino , Mosquitos Vetores/fisiologia
6.
Sci Rep ; 10(1): 19633, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184360

RESUMO

Maize streak virus disease (MSVD), caused by Maize streak virus (MSV; genus Mastrevirus), is one of the most severe and widespread viral diseases that adversely reduces maize yield and threatens food security in Africa. An effective control and management of MSVD requires robust and sensitive diagnostic tests capable of rapid detection of MSV. In this study, a loop-mediated isothermal amplification (LAMP) assay was designed for the specific detection of MSV. This test has shown to be highly specific and reproducible and able to detect MSV in as little as 10 fg/µl of purified genomic DNA obtained from a MSV-infected maize plant, a sensitivity 105 times higher to that obtained with polymerase chain reaction (PCR) in current general use. The high degree of sequence identity between Zambian and other African MSV isolates indicate that this LAMP assay can be used for detecting MSV in maize samples from any region in Africa. Furthermore, this assay can be adopted in minimally equipped laboratories and with potential use in plant clinic laboratories across Africa strengthening diagnostic capacity in countries dealing with MSD.


Assuntos
DNA Viral/análise , Genoma Viral , Vírus do Listrado do Milho/classificação , Vírus do Listrado do Milho/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Doenças das Plantas/virologia , Zea mays/virologia , África , Vírus do Listrado do Milho/isolamento & purificação
7.
Virology ; 540: 141-149, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31794888

RESUMO

In recent years, Sri Lankan cassava mosaic virus (SLCMV), a begomovirus (genus Begmovirus, family Geminiviridae) causing cassava mosaic disease in Asia, poses serious threats to cassava cultivation in Asia. However, the transmission of SLCMV in the areas into which it has recently been introduced remain largely unexplored. Here we have compared the transmission efficiencies of SLCMV by three widely distributed whitefly species in Asia, and found that only Asia II 1 whiteflies were able to transmit this virus efficiently. The transmission efficiencies of SLCMV by different whitefly species were found to correlate positively with quantity of virus in whitefly whole body. Further, the viral transmission efficiency was found to be associated with varied ability of virus movement within different species of whiteflies. These findings provide detailed information regarding whitefly transmission of SLCMV, which will help to understand the spread of SLCMV in the field, and facilitate the prediction of virus epidemics.


Assuntos
Begomovirus/fisiologia , Hemípteros/virologia , Doenças das Plantas/virologia , Animais , Imunofluorescência , Fenótipo
8.
J Pest Sci (2004) ; 91(1): 17-28, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29367840

RESUMO

We investigated the dual effects of bacterial infections and diseased cassava plants on the fitness and biology of the Bemisia tabaci infesting cassava in Africa. Isofemale B. tabaci colonies of sub-Saharan Africa 1-subgroup 3 (SSA1-SG3), infected with two secondary endosymbiotic bacteria Arsenophonus and Rickettsia (AR+) and those free of AR infections (AR-), were compared for fitness parameters on healthy and East African cassava mosaic virus-Uganda variant (EACMV-UG)-infected cassava plants. The whitefly fecundity and nymph development was not affected by bacterial infections or the infection of cassava by the virus. However, emergence of adults from nymphs was 50 and 17% higher by AR- on healthy and virus-infected plants, respectively, than AR+ flies. Development time of adults also was 10 days longer in AR+ than AR-. The whiteflies were further compared for acquisition and retention of EACMV-UG. Higher proportion of AR- acquired (91.8%) and retained (87.6%) the virus than AR+ (71.8, 61.2%, respectively). Similarly, the AR- flies retained higher quantities of virus (~ninefold more) than AR+. These results indicated that bacteria-free whiteflies were superior and better transmitters of EACMV-UG, as they had higher adult emergence, quicker life cycle and better virus retention abilities than those infected with bacteria.

9.
BMC Microbiol ; 15: 93, 2015 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-25933928

RESUMO

BACKGROUND: Cassava provides over half of the dietary requirement for more than 200 million poor in Africa. In recent years, cassava has been affected by an epidemic of a virus disease called cassava brown streak disease (CBSD) that is spreading in much of eastern and central Africa, affecting food security and the economic development of the poor. The viruses that cause CBSD are transmitted by the insect vector whitefly (Bemisia tabaci), which have increased to very high numbers in some African countries. Strains of endosymbiotic bacteria infecting whiteflies have been reported to interact specifically with different whitefly populations with varied effects on its host biology and efficiency of virus transmission. The main aim of this study was therefore to investigate the prevalence and diversity of the secondary endosymbiotic bacteria infecting cassava whiteflies with a view to better understand their role on insect population dynamics and virus disease epidemics. RESULTS: The genetic diversity of field-collected whitefly from Tanzania, Malawi, Uganda and Nigeria was determined by mitochondrial DNA based phylogeny and restriction fragment length polymorphism. Cassava in these countries was infected with five whitefly populations, and each one was infected with different endosymbiotic bacteria. Incidences of Arsenophonus, Rickettsia, Wolbachia and Cardinium varied amongst the populations. Wolbachia was the most predominant symbiont with infection levels varying from 21 to 97%. Infection levels of Arsenophonus varied from 17 to 64% and that of Rickettsia was 0 to 53%. Hamiltonella and Fritschea were absent in all the samples. Multiple locus sequence typing identified four different strains of Wolbachia infecting cassava whiteflies. A common strain of Wolbachia infected the whitefly population Sub-Saharan Africa 1-subgroup 1 (SSA1-SG1) and SSA1-SG2, while others were infected with different strains. Phylogeny based on 16S rDNA of Rickettsia and 23S rDNA of Arsenophonus also identified distinct strains. CONCLUSIONS: Genetically diverse bacteria infect cassava whiteflies in Africa with varied prevalence across different host populations, which may affect their whitefly biology. Further studies are required to investigate the role of endosymbionts to better understand the whitefly population dynamics.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Variação Genética , Hemípteros/microbiologia , Simbiose , África , Animais , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Manihot/parasitologia , Dados de Sequência Molecular , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Análise de Sequência de DNA
10.
PLoS One ; 9(5): e96642, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24846209

RESUMO

Cassava (Manihot esculenta) is a major food staple in sub-Saharan Africa, which is severely affected by cassava brown streak disease (CBSD). The aim of this study was to identify resistance for CBSD as well as to understand the mechanism of putative resistance for providing effective control for the disease. Three cassava varieties; Kaleso, Kiroba and Albert were inoculated with cassava brown streak viruses by grafting and also using the natural insect vector the whitefly, Bemisia tabaci. Kaleso expressed mild or no disease symptoms and supported low concentrations of viruses, which is a characteristic of resistant plants. In comparison, Kiroba expressed severe leaf but milder root symptoms, while Albert was susceptible with severe symptoms both on leaves and roots. Real-time PCR was used to estimate virus concentrations in cassava varieties. Virus quantities were higher in Kiroba and Albert compared to Kaleso. The Illumina RNA-sequencing was used to further understand the genetic basis of resistance. More than 700 genes were uniquely overexpressed in Kaleso in response to virus infection compared to Albert. Surprisingly, none of them were similar to known resistant gene orthologs. Some of the overexpressed genes, however, belonged to the hormone signalling pathways and secondary metabolites, both of which are linked to plant resistance. These genes should be further characterised before confirming their role in resistance to CBSD.


Assuntos
Resistência à Doença/genética , Manihot/genética , Manihot/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Potyviridae/genética , Potyviridae/metabolismo
11.
PLoS One ; 9(1): e86256, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465993

RESUMO

The aphid Myzus persicae displays high mortality on tobacco plants bearing a transgene which results in the accumulation of the ketosteroids cholestan-3-one and cholest-4-en-3-one in the phloem sap. To test whether the ketosteroids are the basis of the plant resistance to the aphids, M. persicae were reared on chemically-defined diets with different steroid contents at 0.1-10 µg ml(-1). Relative to sterol-free diet and dietary supplements of the two ketosteroids and two phytosterols, dietary cholesterol significantly extended aphid lifespan and increased fecundity at one or more dietary concentrations tested. Median lifespan was 50% lower on the diet supplemented with cholest-4-en-3-one than on the cholesterol-supplemented diet. Aphid feeding rate did not vary significantly across the treatments, indicative of no anti-feedant effect of any sterol/steroid. Aphids reared on diets containing equal amounts of cholesterol and cholest-4-en-3-one showed fecundity equivalent to aphids on diets containing only cholesterol. Aphids were reared on diets that reproduced the relative steroid abundance in the phloem sap of the control and modified tobacco plants, and their performance on the two diet formulations was broadly equivalent. We conclude that, at the concentrations tested, plant ketosteroids support weaker aphid performance than cholesterol, but do not cause acute toxicity to the aphids. In plants, the ketosteroids may act synergistically with plant factors absent from artificial diets but are unlikely to be solely responsible for resistance of modified tobacco plants.


Assuntos
Afídeos/fisiologia , Interações Hospedeiro-Parasita , Nicotiana/parasitologia , Esteróis/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Colestenonas/metabolismo , Colesterol/metabolismo , Dieta , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Nicotiana/genética , Nicotiana/metabolismo
12.
Appl Environ Microbiol ; 79(19): 6117-23, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23892755

RESUMO

The symbiotic bacterium Buchnera aphidicola lacks key genes in the biosynthesis of five essential amino acids (EAAs), and yet its animal hosts (aphids) depend on the symbiosis for the synthesis of these EAAs (isoleucine, leucine, methionine, phenylalanine, and valine). We tested the hypothesis, derived from genome annotation, that the missing Buchnera reactions are mediated by host enzymes, with the exchange of metabolic intermediates between the partners. The specialized host cells bearing Buchnera were separated into a Buchnera fraction and a Buchnera-free host cell fraction (HF). Addition of HF to isolated Buchnera preparations significantly increased the production of leucine and phenylalanine, and recombinant enzymes mediating the final reactions in branched-chain amino acid and phenylalanine synthesis rescued the production of these EAAs by Buchnera preparations without HF. The likely precursors for the missing proximal reactions in isoleucine and methionine synthesis were identified, and they differed from predictions based on genome annotations: synthesis of 2-oxobutanoate, the aphid-derived precursor of isoleucine synthesis, was stimulated by homoserine and not threonine via threonine dehydratase, and production of the homocysteine precursor of methionine was driven by cystathionine, not cysteine, via reversal of the transsulfuration pathway. The evolution of shared metabolic pathways in this symbiosis can be attributed to host compensation for genomic deterioration in the symbiont, involving changes in host gene expression networks to recruit specific enzymes to the host cell.


Assuntos
Afídeos/microbiologia , Afídeos/fisiologia , Buchnera/fisiologia , Redes e Vias Metabólicas , Simbiose , Animais , Afídeos/metabolismo , Buchnera/metabolismo
13.
J Insect Physiol ; 58(11): 1383-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22878342

RESUMO

The phloem sap of fava bean (Vicia faba) plants utilized by the pea aphid Acyrthosiphon pisum contains three sterols, cholesterol, stigmasterol and sitosterol, in a 2:2:1 ratio. To investigate the nutritional value of these sterols, pea aphids were reared on chemically-defined diets containing each sterol at 0.1, 1 and 10µgml(-1) with a sterol-free diet as control. Larval growth rate and aphid lifespan did not vary significantly across the diets, indicating that sterol reserves can buffer some performance indices against a shortfall in dietary sterol over at least one generation. However, lifetime reproductive output was depressed in aphids on diets containing stigmasterol or no sterol, relative to diets supplemented with cholesterol or sitosterol. The cholesterol density of embryos in teneral adults was significantly higher than in the total body; and the number and biomass of embryos in aphids on diets with stigmasterol and no sterols were reduced relative to diets with cholesterol or sitosterol, indicating that the reproductive output of the pea aphid can be limited by the amount and composition of dietary sterol. In a complementary RNA-seq analysis of pea aphids reared on plants and diets with different sterol contents, 7.6% of the 17,417 detected gene transcripts were differentially expressed. Transcript abundance of genes with annotated function in sterol utilization did not vary significantly among treatments, suggesting that the metabolic response to dietary sterol may be mediated primarily at the level of enzyme function or metabolite concentration.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Afídeos/metabolismo , Fitosteróis/metabolismo , Animais , Dieta , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Floema , Fitosteróis/análise , Folhas de Planta/química , Transcriptoma , Vicia faba/química
14.
J Gen Virol ; 92(Pt 6): 1467-1474, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21346031

RESUMO

Luteoviruses and poleroviruses are important plant viruses transmitted exclusively by aphids in a circulative manner via the aphid haemolymph. A chaperonin protein, GroEL, synthesized in aphids by a symbiotic bacterium, Buchnera aphidicola, is hypothesized to bind to virus particles in the haemolymph, thereby promoting transmission. To investigate this hypothesis, the GroEL-binding site for barley yellow dwarf virus (BYDV) was determined in vitro, and the abundance of GroEL protein in different aphid tissues was investigated. Virus binding to a peptide library representing the full GroEL molecule revealed a single binding site that coincides with the site that anchors two GroEL rings to form the native GroEL tetradecamer. In the functional form of the GroEL protein, virus binding would compete with the formation of the two GroEL rings. Using a mAb raised against a Buchnera-specific GroEL epitope, GroEL was detected in Buchnera cells by immunoblotting and immunocytochemistry, but not in the aphid haemolymph, fat body or gut. From the prediction here that GroEL-virus interactions are probably severely limited by competition with other GroEL molecules, and the evidence that GroEL is not available to interact with virus particles in vivo, it is concluded that GroEL-virus interactions are unlikely to contribute to virus transmission by aphids.


Assuntos
Afídeos/microbiologia , Afídeos/virologia , Proteínas de Bactérias/metabolismo , Buchnera/fisiologia , Chaperonina 60/metabolismo , Luteovirus/fisiologia , Simbiose , Animais , Afídeos/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Buchnera/química , Buchnera/genética , Chaperonina 60/química , Chaperonina 60/genética , Insetos Vetores/microbiologia , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Luteovirus/genética , Conformação Molecular , Dados de Sequência Molecular , Doenças das Plantas/virologia , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...