Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cells ; 13(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38727298

RESUMO

The antipsychotic drug clozapine demonstrates superior efficacy in treatment-resistant schizophrenia, but its intracellular mode of action is not completely understood. Here, we analysed the effects of clozapine (2.5-20 µM) on metabolic fluxes, cell respiration, and intracellular ATP in human HL60 cells. Some results were confirmed in leukocytes of clozapine-treated patients. Neuroreceptor inhibition under clozapine reduced Akt activation with decreased glucose uptake, thereby inducing ER stress and the unfolded protein response (UPR). Metabolic profiling by liquid-chromatography/mass-spectrometry revealed downregulation of glycolysis and the pentose phosphate pathway, thereby saving glucose to keep the electron transport chain working. Mitochondrial respiration was dampened by upregulation of the F0F1-ATPase inhibitory factor 1 (IF1) leading to 30-40% lower oxygen consumption in HL60 cells. Blocking IF1 expression by cotreatment with epigallocatechin-3-gallate (EGCG) increased apoptosis of HL60 cells. Upregulation of the mitochondrial citrate carrier shifted excess citrate to the cytosol for use in lipogenesis and for storage as triacylglycerol in lipid droplets (LDs). Accordingly, clozapine-treated HL60 cells and leukocytes from clozapine-treated patients contain more LDs than untreated cells. Since mitochondrial disturbances are described in the pathophysiology of schizophrenia, clozapine-induced mitohormesis is an excellent way to escape energy deficits and improve cell survival.


Assuntos
Clozapina , Mitocôndrias , Humanos , Clozapina/farmacologia , Clozapina/análogos & derivados , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Células HL-60 , Antipsicóticos/farmacologia , Apoptose/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Reprogramação Metabólica
2.
NAR Genom Bioinform ; 6(1): lqae026, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500564

RESUMO

RNA helicases perform essential housekeeping and regulatory functions in all domains of life by binding and unwinding RNA molecules. The Ski2-like proteins are primordial helicases that play an active role in eukaryotic RNA homeostasis pathways, with multiple homologs having specialized functions. The significance of the expansion and diversity of Ski2-like proteins in Archaea, the third domain of life, has not yet been established. Here, by studying the phylogenetic diversity of Ski2-like helicases among archaeal genomes and the enzymatic activities of those in Thermococcales, we provide further evidence of the function of this protein family in archaeal metabolism of nucleic acids. We show that, in the course of evolution, ASH-Ski2 and Hel308-Ski2, the two main groups of Ski2-like proteins, have diverged in their biological functions. Whereas Hel308 has been shown to mainly act on DNA, we show that ASH-Ski2, previously described to be associated with the 5'-3' aRNase J exonuclease, acts on RNA by supporting an efficient annealing activity, but also an RNA unwinding with a 3'-5' polarity. To gain insights into the function of Ski2, we also analyse the transcriptome of Thermococcus barophilus ΔASH-Ski2 mutant strain and provide evidence of the importance of ASH-Ski2 in cellular metabolism pathways related to translation.

3.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396865

RESUMO

Antipsychotic drug (APD) medication can lead to metabolic dysfunctions and weight gain, which together increase morbidity and mortality. Metabolically active visceral adipose tissue (VAT) in particular plays a crucial role in the etiopathology of these metabolic dysregulations. Here, we studied the effect of 12 weeks of drug medication by daily oral feeding of clozapine and haloperidol on the perirenal fat tissue as part of VAT of male and female Sprague Dawley rats in the context of complex former investigations on brain, liver, and blood. Adipocyte area values were determined, as well as triglycerides, non-esterified fatty acids (NEFAs), glucose, glycogen, lactate, malondialdehyde equivalents, ferric iron and protein levels of Perilipin-A, hormone-sensitive-lipase (HSL), hepcidin, glucose transporter-4 (Glut-4) and insulin receptor-ß (IR-ß). We found increased adipocyte mass in males, with slightly higher adipocyte area values in both males and females under clozapine treatment. Triglycerides, NEFAs, glucose and oxidative stress in the medicated groups were unchanged or slightly decreased. In contrast to controls and haloperidol-medicated rats, perirenal adipocyte mass and serum leptin levels were not correlated under clozapine. Protein expressions of perilipin-A, Glut-4 and HSL were decreased under clozapine treatment. IR-ß expression changed sex-specifically in the clozapine-medicated groups associated with higher hepcidin levels in the perirenal adipose tissue of clozapine-treated females. Taken together, clozapine and haloperidol had a smaller effect than expected on perirenal adipose tissue. The perirenal adipose tissue shows only weak changes in lipid and glucose metabolism. The main changes can be seen in the proteins examined, and probably in their effect on liver metabolism.


Assuntos
Antipsicóticos , Clozapina , Ratos , Masculino , Feminino , Animais , Antipsicóticos/farmacologia , Antipsicóticos/metabolismo , Clozapina/farmacologia , Haloperidol/farmacologia , Hepcidinas/metabolismo , Ratos Sprague-Dawley , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Glucose/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Encéfalo/metabolismo , Perilipinas/metabolismo
4.
PLoS Biol ; 21(1): e3001942, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603027

RESUMO

RNA processing and degradation shape the transcriptome by generating stable molecules that are necessary for translation (rRNA and tRNA) and by facilitating the turnover of mRNA, which is necessary for the posttranscriptional control of gene expression. In bacteria and the plant chloroplast, RNA degradosomes are multienzyme complexes that process and degrade RNA. In many bacterial species, the endoribonuclease RNase E is the central component of the RNA degradosome. RNase E-based RNA degradosomes are inner membrane proteins in a large family of gram-negative bacteria (ß- and γ-Proteobacteria). Until now, the reason for membrane localization was not understood. Here, we show that a mutant strain of Escherichia coli, in which the RNA degradosome is localized to the interior of the cell, has high levels of 20S and 40S particles that are defective intermediates in ribosome assembly. These particles have aberrant protein composition and contain rRNA precursors that have been cleaved by RNase E. After RNase E cleavage, rRNA fragments are degraded to nucleotides by exoribonucleases. In vitro, rRNA in intact ribosomes is resistant to RNase E cleavage, whereas protein-free rRNA is readily degraded. We conclude that RNA degradosomes in the nucleoid of the mutant strain interfere with cotranscriptional ribosome assembly. We propose that membrane-attached RNA degradosomes in wild-type cells control the quality of ribosome assembly after intermediates are released from the nucleoid. That is, the compact structure of mature ribosomes protects rRNA against cleavage by RNase E. Turnover of a proportion of intermediates in ribosome assembly explains slow growth of the mutant strain. Competition between mRNA and rRNA degradation could be the cause of slower mRNA degradation in the mutant strain. We conclude that attachment of the RNA degradosome to the bacterial inner cytoplasmic membrane prevents wasteful degradation of rRNA precursors, thus explaining the reason for conservation of membrane-attached RNA degradosomes throughout the ß- and γ-Proteobacteria.


Assuntos
Proteínas de Escherichia coli , RNA Ribossômico , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Ribossomos/metabolismo , Complexos Multienzimáticos/metabolismo , RNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Membrana Celular/metabolismo , Bactérias/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Bacteriano/genética
5.
BMC Pharmacol Toxicol ; 23(1): 8, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033194

RESUMO

BACKGROUND: Patients with liver diseases often have some form of anemia. Hematological dyscrasias are known side effects of antipsychotic drug medication and the occurrence of agranulocytosis under clozapine is well described. However, the sex-dependent impact of clozapine and haloperidol on erythrocytes and symptoms like anemia, and its association with hepatic iron metabolism has not yet been completely clarified. Therefore, in the present study, we investigated the effect of both antipsychotic drugs on blood parameters and iron metabolism in the liver of male and female Sprague Dawley rats. METHODS: After puberty, rats were treated orally with haloperidol or clozapine for 12 weeks. Blood count parameters, serum ferritin, and liver transferrin bound iron were determined by automated counter. Hemosiderin (Fe3+) was detected in liver sections by Perl's Prussian blue staining. Liver hemoxygenase (HO-1), 5'aminolevulinate synthase (ALAS1), hepcidin, heme-regulated inhibitor (HRI), cytochrome P4501A1 (CYP1A1) and 1A2 (CYP1A2) were determined by Western blotting. RESULTS: We found anemia with decreased erythrocyte counts, associated with lower hemoglobin and hematocrit, in females with haloperidol treatment. Males with clozapine medication showed reduced hemoglobin and increased red cell distribution width (RDW) without changes in erythrocyte numbers. High levels of hepatic hemosiderin were found in the female clozapine and haloperidol medicated groups. Liver HRI was significantly elevated in male clozapine medicated rats. CYP1A2 was significantly reduced in clozapine medicated females. CONCLUSIONS: The characteristics of anemia under haloperidol and clozapine medication depend on the administered antipsychotic drug and on sex. We suggest that anemia in rats under antipsychotic drug medication is a sign of an underlying liver injury induced by the drugs. Changing hepatic iron metabolism under clozapine and haloperidol may help to reduce these effects of liver diseases.


Assuntos
Antipsicóticos , Clozapina , Síndrome Metabólica , Animais , Antipsicóticos/farmacologia , Clozapina/farmacologia , Eritrócitos , Feminino , Haloperidol/farmacologia , Humanos , Ferro/metabolismo , Fígado , Masculino , Síndrome Metabólica/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Biomolecules ; 11(7)2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206878

RESUMO

Helicase proteins are known to use the energy of ATP to unwind nucleic acids and to remodel protein-nucleic acid complexes. They are involved in almost every aspect of DNA and RNA metabolisms and participate in numerous repair mechanisms that maintain cellular integrity. The archaeal Lhr-type proteins are SF2 helicases that are mostly uncharacterized. They have been proposed to be DNA helicases that act in DNA recombination and repair processes in Sulfolobales and Methanothermobacter. In Thermococcales, a protein annotated as an Lhr2 protein was found in the network of proteins involved in RNA metabolism. To investigate this, we performed in-depth phylogenomic analyses to report the classification and taxonomic distribution of Lhr-type proteins in Archaea, and to better understand their relationship with bacterial Lhr. Furthermore, with the goal of envisioning the role(s) of aLhr2 in Thermococcales cells, we deciphered the enzymatic activities of aLhr2 from Thermococcus barophilus (Tbar). We showed that Tbar-aLhr2 is a DNA/RNA helicase with a significant annealing activity that is involved in processes dependent on DNA and RNA transactions.


Assuntos
DNA Helicases/genética , RNA Helicases/genética , Thermococcales/enzimologia , Adenosina Trifosfatases/genética , Proteínas Arqueais/química , DNA/química , DNA Helicases/isolamento & purificação , DNA Helicases/metabolismo , Filogenia , RNA/química , RNA Helicases/isolamento & purificação , RNA Helicases/metabolismo , Homologia de Sequência de Aminoácidos , Thermococcales/genética , Thermococcales/metabolismo
7.
Brain Behav ; 10(8): e01694, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32525610

RESUMO

OBJECTIVE: Sex-dependent disturbances of peripheral glucose metabolism are known complications of antipsychotic drug treatment. The influence of long-term clozapine and haloperidol medication on hypothalamus, maintaining aspects of internal body homeostasis, has not yet been completely clarified. METHODS: After puberty, male and female Sprague Dawley rats were fed orally with ground pellets containing haloperidol (1 mg/kgBW/day) or clozapine (20 mg/kgBW/day) for 12 weeks. The hypothalamic protein expression of dopamine receptors D2R and D4R, melanocortin receptor MC4R, and glucose transporters Glut1 and Glut3 was examined. Glucose, glycogen, lactate, and pyruvate levels were determined, also malondialdehyde equivalents as markers of oxidative stress. RESULTS: D2R expression was increased in the male haloperidol and clozapine group but decreased in females medicated with clozapine. D4R expression was upregulated under clozapine medication. While females showed increased Glut1, Glut3 was elevated in both male and female clozapine-medicated animals. We found no changes of hypothalamic malondialdehyde, glycogen, and MC4R. Hypothalamic lactate was elevated in the female clozapine group. CONCLUSION: Clozapine sex-dependently affects the expression of D2R, Glut1, and Glut3. The upregulation of the glucose transporters indicates glucose deprivation in the endothelial cells and consequently in astrocytes and neurons. Increased hypothalamic lactate in females under clozapine points to enhanced glycolysis with a higher glucose demand to produce the required energy. Haloperidol did not change the expression of the glucose transporters and upregulated D2R only in males.


Assuntos
Hipotálamo , Animais , Clozapina/farmacologia , Células Endoteliais , Feminino , Proteínas Facilitadoras de Transporte de Glucose , Haloperidol/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Dopaminérgicos
8.
Nucleic Acids Res ; 48(7): 3832-3847, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32030412

RESUMO

A network of RNA helicases, endoribonucleases and exoribonucleases regulates the quantity and quality of cellular RNAs. To date, mechanistic studies focussed on bacterial and eukaryal systems due to the challenge of identifying the main drivers of RNA decay and processing in Archaea. Here, our data support that aRNase J, a 5'-3' exoribonuclease of the ß-CASP family conserved in Euryarchaeota, engages specifically with a Ski2-like helicase and the RNA exosome to potentially exert control over RNA surveillance, at the vicinity of the ribosome. Proteomic landscapes and direct protein-protein interaction analyses, strengthened by comprehensive phylogenomic studies demonstrated that aRNase J interplay with ASH-Ski2 and a cap exosome subunit. Finally, Thermococcus barophilus whole-cell extract fractionation experiments provide evidences that an aRNase J/ASH-Ski2 complex might exist in vivo and hint at an association of aRNase J with the ribosome that is emphasised in absence of ASH-Ski2. Whilst aRNase J homologues are found among bacteria, the RNA exosome and the Ski2-like RNA helicase have eukaryotic homologues, underlining the mosaic aspect of archaeal RNA machines. Altogether, these results suggest a fundamental role of ß-CASP RNase/helicase complex in archaeal RNA metabolism.


Assuntos
Euryarchaeota/enzimologia , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA Helicases/metabolismo , Processamento Pós-Transcricional do RNA , RNA Arqueal/metabolismo , Mapeamento de Interação de Proteínas , Pyrococcus abyssi/enzimologia , Thermococcus/enzimologia
9.
Mol Microbiol ; 111(6): 1715-1731, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30903628

RESUMO

The reason for RNase E attachment to the inner membrane is largely unknown. To understand the cell biology of RNA degradation, we have characterized a strain expressing RNase E lacking the membrane attachment site (cytoplasmic RNase E). Genome-wide data show a global slowdown in mRNA degradation. There is no correlation between mRNA stabilization and the function or cellular location of encoded proteins. The activity of cRNase E is comparable to the wild-type enzyme in vitro, but the mutant protein is unstable in vivo. Autoregulation of cRNase E synthesis compensates for protein instability. cRNase E associates with other proteins to assemble a cytoplasmic RNA degradosome. CsrB/C sRNAs, whose stability is regulated by membrane-associated CsrD, are stabilized. Membrane attachment of RNase E is thus necessary for CsrB/C turnover. In contrast to mRNA stability, ribosome-free transcripts are sensitive to inactivation by cRNase E. Our results show that effects on RNA degradation are not due to the differences in the activity or level of cRNase E, or failure to assemble the RNA degradosome. We propose that membrane attachment is necessary for RNase E stability, functional interactions with membrane-associated regulatory factors and protection of ribosome-free transcripts from premature interactions with RNase E in the nucleoid.


Assuntos
Endorribonucleases/metabolismo , Escherichia coli/genética , Complexos Multienzimáticos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Helicases/metabolismo , Estabilidade de RNA , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteólise , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/genética
10.
Methods Enzymol ; 612: 47-66, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30502954

RESUMO

In this study, we compared different computational methods used for genome-wide determination of mRNA half-lives in Escherichia coli with a special focus on the impact on considering a delay before the onset of mRNA decay after transcription arrest. A wide variety of datasets were analyzed coming from different technical methods for mRNA quantification (microarrays, RNA-seq, and RT-qPCR) and different bacterial growth conditions. The exponential decay of mRNA levels was fitted using both linear and exponential models and with or without a delay. We showed that for all the models, independently of mRNA quantification methods and growth conditions, ignoring the delay resulted in only a modest overestimation of the half-life. For approximately 80% of the mRNAs, differences in mRNA half-life values were less than 34s. The correlation between half-lives estimated with and without a delay was extremely high. However, the slope of the linear regression between the half-lives with and without a delay tended to decrease with the delay. For the few mRNAs for which taking into account the delay influenced the estimated half-life, the impact was dependent on the model and the growth condition. The smallest impact was obtained for the linear model.


Assuntos
Escherichia coli/genética , Estabilidade de RNA/fisiologia , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Estabilidade de RNA/genética , Transcrição Gênica/genética
11.
FEMS Microbiol Rev ; 42(5): 579-613, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29684129

RESUMO

RNA-processing pathways are at the centre of regulation of gene expression. All RNA transcripts undergo multiple maturation steps in addition to covalent chemical modifications to become functional in the cell. This includes destroying unnecessary or defective cellular RNAs. In Archaea, information on mechanisms by which RNA species reach their mature forms and associated RNA-modifying enzymes are still fragmentary. To date, most archaeal actors and pathways have been proposed in light of information gathered from Bacteria and Eukarya. In this context, this review provides a state of the art overview of archaeal endoribonucleases and exoribonucleases that cleave and trim RNA species and also of the key small archaeal proteins that bind RNAs. Furthermore, synthetic up-to-date views of processing and biogenesis pathways of archaeal transfer and ribosomal RNAs as well as of maturation of stable small non-coding RNAs such as CRISPR RNAs, small C/D and H/ACA box guide RNAs, and other emerging classes of small RNAs are described. Finally, prospective post-transcriptional mechanisms to control archaeal messenger RNA quality and quantity are discussed.


Assuntos
Archaea/enzimologia , Endorribonucleases/metabolismo , Exorribonucleases/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , Archaea/metabolismo
12.
Eur Arch Psychiatry Clin Neurosci ; 268(6): 555-563, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29404686

RESUMO

We investigated the effects of clozapine and haloperidol, drugs that are widely used in the treatment of schizophrenia, on gene expression in six cortical and subcortical brain regions of adult rats. Drug treatments started at postnatal day 85 and continued over a 12-week period. Ten animals received haloperidol (1 mg/kg bodyweight) and ten received clozapine (20 mg/kg bodyweight) orally each day. Ten control rats received no drugs. The ten genes selected for this study did not belong to the dopaminergic or serotoninergic systems, which are typically targeted by the two substances, but coded for proteins of the cytoskeleton and proteins belonging to the synaptic transmitter release machinery. Quantitative real-time PCR was performed in the prelimbic cortex, cingulate gyrus (CG1) and caudate putamen and in the hippocampal cornu ammonis 1 (CA1), cornu ammonis 3 (CA3) and dentate gyrus. Results show distinct patterns of gene expression under the influence of the two drugs, but also distinct gene regulations dependent on the brain regions. Haloperidol-medicated animals showed statistically significant downregulation of SNAP-25 in CA3 (p = 0.0134) and upregulation of STX1A in CA1 (p = 0.0133) compared to controls. Clozapine-treated animals showed significant downregulation of SNAP-25 in CG1 (p = 0.0013). Our results clearly reveal that the drugs' effects are different between brain regions. These effects are possibly indirectly mediated through feedback mechanisms by proteins targeted by the drugs, but direct effects of haloperidol or clozapine on mechanisms of gene expression cannot be excluded.


Assuntos
Antipsicóticos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Clozapina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Haloperidol/farmacologia , Neostriado/efeitos dos fármacos , Animais , Antipsicóticos/administração & dosagem , Região CA1 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/efeitos dos fármacos , Clozapina/administração & dosagem , Giro Denteado/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Haloperidol/administração & dosagem , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Proteína 25 Associada a Sinaptossoma/efeitos dos fármacos , Sintaxina 1/efeitos dos fármacos
13.
Sex Dev ; 11(5-6): 293-297, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29332064

RESUMO

A heterozygous intragenic duplication within the repeated area (CTGCAGCTG)×2 of the NR5A1 gene was found in a 15-year-old 46,XY DSD (disorders/differences of sex development) patient with micropenis and severe proximal hypospadias. This heterozygous duplication has already been described twice in boys with a similar phenotype, whereas a deletion of 3 amino acids at the same position in the protein SF-1 has been described in a 46,XX patient with primary ovarian failure and short stature. These data suggest that this region within the NR5A1 gene has an important role for SF-1 protein function in gonads and is a hotspot for intragenic rearrangements.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual/genética , Hipospadia/genética , Fator Esteroidogênico 1/genética , Adolescente , Heterozigoto , Humanos , Hipospadia/metabolismo , Masculino , Mutação/genética , Fator Esteroidogênico 1/metabolismo
14.
Sci Rep ; 6: 25057, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27112822

RESUMO

Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Membrana/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Carbono/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Expressão Gênica , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Proteínas de Membrana/genética , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Transcrição Gênica
15.
Eur J Med Genet ; 59(4): 195-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26921530

RESUMO

CHARGE syndrome (MIM#214800) (Coloboma, Heart defect, Atresia of choanae, Retarded growth and development, Genital hypoplasia, Ear abnormalities/deafness) is caused by heterozygous mutation of CHD7 transmitted in an autosomal dominant manner. In this report, we describe a patient with bilateral hearing impairment, unusually-shaped ears, no intellectual disability and a patent ductus arteriosus. Further investigation showed abnormal semicircular canals and the presence of olfactory bulbs. He does not fulfill the Blake or the Verloes criteria for CHARGE. A de novo mutation at the donor splice site of intron 33 was identified (c.7164 + 1G > A). It is of importance to diagnose mildly affected patients for appropriate genetic counselling and to better understand the mild end of the phenotypic spectrum of CHARGE syndrome.


Assuntos
Síndrome CHARGE/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Perda Auditiva Neurossensorial/genética , Cardiopatias Congênitas/genética , Síndrome CHARGE/patologia , Canal Arterial/patologia , Perda Auditiva Neurossensorial/patologia , Cardiopatias Congênitas/patologia , Humanos , Lactente , Masculino , Mutação , Sítios de Splice de RNA/genética , Canais Semicirculares/patologia
16.
PLoS Genet ; 11(2): e1004961, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25647427

RESUMO

RNase E, which is the central component of the multienzyme RNA degradosome, serves as a scaffold for interaction with other enzymes involved in mRNA degradation including the DEAD-box RNA helicase RhlB. Epifluorescence microscopy under live cell conditions shows that RNase E and RhlB are membrane associated, but neither protein forms cytoskeletal-like structures as reported earlier by Taghbalout and Rothfield. We show that association of RhlB with the membrane depends on a direct protein interaction with RNase E, which is anchored to the inner cytoplasmic membrane through an MTS (Membrane Targeting Sequence). Molecular dynamics simulations show that the MTS interacts with the phospholipid bilayer by forming a stabilized amphipathic α-helix with the helical axis oriented parallel to the plane of the bilayer and hydrophobic side chains buried deep in the acyl core of the membrane. Based on the molecular dynamics simulations, we propose that the MTS freely diffuses in the membrane by a novel mechanism in which a large number of weak contacts are rapidly broken and reformed. TIRFm (Total Internal Reflection microscopy) shows that RNase E in live cells rapidly diffuses over the entire inner membrane forming short-lived foci. Diffusion could be part of a scanning mechanism facilitating substrate recognition and cooperativity. Remarkably, RNase E foci disappear and the rate of RNase E diffusion increases with rifampicin treatment. Control experiments show that the effect of rifampicin is specific to RNase E and that the effect is not a secondary consequence of the shut off of E. coli transcription. We therefore interpret the effect of rifampicin as being due to the depletion of RNA substrates for degradation. We propose a model in which formation of foci and constraints on diffusion arise from the transient clustering of RNase E into cooperative degradation bodies.


Assuntos
RNA Helicases DEAD-box/genética , Endorribonucleases/genética , Proteínas de Escherichia coli/genética , Complexos Multienzimáticos/genética , Polirribonucleotídeo Nucleotidiltransferase/genética , RNA Helicases/genética , Estabilidade de RNA/genética , Estruturas da Membrana Celular/química , Estruturas da Membrana Celular/genética , RNA Helicases DEAD-box/química , Endorribonucleases/química , Escherichia coli/genética , Simulação de Dinâmica Molecular , Complexos Multienzimáticos/química , Conformação de Ácido Nucleico , Fosfolipídeos/química , Fosfolipídeos/genética , Polirribonucleotídeo Nucleotidiltransferase/química , Mapas de Interação de Proteínas/genética , RNA Helicases/química , RNA Mensageiro/genética
17.
Biochim Biophys Acta ; 1829(6-7): 514-22, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23459248

RESUMO

Bacterial transcripts each have a characteristic half-life, suggesting that the processes of RNA degradation work in an active and selective manner. Moreover, the processes are well controlled, thereby ensuring that degradation is orderly and coordinated. Throughout much of the bacterial kingdom, RNA degradation processes originate through the actions of assemblies of key RNA enzymes, known as RNA degradosomes. Neither conserved in composition, nor unified by common evolutionary ancestry, RNA degradosomes nonetheless can be found in divergent bacterial lineages, implicating a common requirement for the co-localisation of RNA metabolic activities. We describe how the cooperation of components in the representative degradosome of Escherichia coli may enable controlled access to transcripts, so that they have defined and programmable lifetimes. We also discuss how this cooperation contributes to precursor processing and to the riboregulation of intricate post-transcriptional networks in the control of gene expression. The E. coli degradosome interacts with the cytoplasmic membrane, and we discuss how this interaction may spatially organise the assembly and contribute to subunit cooperation and substrate capture. This article is part of a Special Issue entitled: RNA Decay mechanisms.


Assuntos
Endorribonucleases/genética , Complexos Multienzimáticos , Polirribonucleotídeo Nucleotidiltransferase , RNA Helicases , Estabilidade de RNA , RNA Bacteriano/genética , Membrana Celular/química , Membrana Celular/genética , Endorribonucleases/química , Escherichia coli/enzimologia , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/genética , Conformação Proteica , Estrutura Terciária de Proteína , RNA Helicases/química , RNA Helicases/genética , RNA Bacteriano/química
18.
Nucleic Acids Res ; 40(17): 8361-70, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22740653

RESUMO

Site-specific recombination catalyzed by tyrosine recombinases follows a common pathway consisting of two consecutive strand exchanges. The first strand exchange generates a Holliday junction (HJ), which is resolved by a second strand exchange. In integrons, attC sites recombine as folded single-stranded substrates. Only one of the two attC site strands, the bottom one, is efficiently bound and cleaved by the integrase during the insertion of gene cassettes at the double-stranded attI site. Due to the asymmetry of this complex, a second strand exchange on the attC bottom strand (bs) would form linearized abortive recombination products. We had proposed that HJ resolution would rely on an uncharacterized mechanism, probably replication. Using an attC site carried on a plasmid with each strand specifically tagged, we followed the destiny of each strand after recombination. We demonstrated that only one strand, the one carrying the attC bs, is exchanged. Furthermore, we show that the recombination products contain the attC site bs and its entire de novo synthesized complementary strand. Therefore, we demonstrate the replicative resolution of single-strand recombination in integrons and rule out the involvement of a second strand exchange of any kind in the attC×attI reaction.


Assuntos
Replicação do DNA , Integrons , Recombinação Genética , Sítios de Ligação Microbiológicos , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , DNA Cruciforme/metabolismo , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo
19.
Mol Microbiol ; 82(6): 1305-10, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22074454

RESUMO

RNase E is an essential endoribonuclease with a preference for RNA substrates with 5'-monophosphate ends. Primary transcripts, which have 5' triphosphate ends, are thus protected from RNase E. Their conversion to 5'-monophosphate transcripts by RppH is a prerequisite for RNase E-mediated processing and degradation. 5'-monophosphate recognition involves binding to a subdomain in the catalytic core of RNase E known as the 5' sensor. There are, however, transcripts that can be attacked directly by RNase E in a 5'-end-independent pathway. Direct entry involves elements outside of the catalytic domain that are located in the carboxyl terminal half (CTH) of RNase E. Strains harbouring rne alleles that express variants of RNase E in which 5' sensing (rneR169Q) or direct entry (rneΔCTH) are inactivated, are viable. However, the rneR169Q/rneΔCTH and ΔrppH/rneΔCTH combinations are synthetic lethal suggesting that the essential function(s) of RNase E requires at least one of these pathways to be active. A striking result is the demonstration that mutations affecting Rho-dependent transcription termination can overcome synthetic lethality by a pathway that requires RNase H. It is hypothesized that R-loop formation and RNase H cleavage substitute for RNase E-dependent RNA processing and mRNA degradation.


Assuntos
Endorribonucleases/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/enzimologia , Fatores de Alongamento de Peptídeos/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Endorribonucleases/química , Endorribonucleases/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Fator Rho/genética , Fator Rho/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
20.
Clinics (Sao Paulo) ; 65(9): 885-94, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21049217

RESUMO

OBJECTIVES: The aim of our study was to investigate the impact of typical and atypical antipsychotic drugs on leptin concentration in blood and changes in the receptor expression in the hypothalamus of male Wistar rats. METHODS: From the age of 13 to 18 weeks, three groups of 20 animals were fed an average dose of 3.5 + 0.03 mg/ kg body weight (BW) haloperidol; 30.6 + 0.22 mg/kg BW clozapine; or 14.9 + 0.13 mg/kg BW ziprasidone in ground food pellets containing 15% fat. Twenty control animals received no drugs. Blood samples were taken at week 14, 16, and 19. Locomotor activity and exploratory behavior were measured using the alcove test at weeks 15 and 17. The expression of the hypothalamic leptin receptor in rat brains was determined by using a Western blot. RESULTS: Rats medicated with haloperidol and ziprasidone showed a significantly decreased percentage weight gain and food consumption. We observed no differences in the alcove test, but locomotor activity was significantly reduced in the haloperidol group. Except for rats in the clozapine and ziprasidone groups, after 2 weeks of drug application, we found no changes in the leptin blood concentrations among the four groups or animals within each group. Moreover, we did not find specific differences in hypothalamic leptin receptor expression among the groups. CONCLUSION: We concluded that in male Wistar rats during this treatment period, the tested drugs did not act directly on the leptin regulatory system. We recommend further studies using long-term treatment of different rat strains.


Assuntos
Antipsicóticos/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Hipotálamo/química , Leptina/sangue , Receptores para Leptina/análise , Aumento de Peso/efeitos dos fármacos , Animais , Western Blotting , Clozapina/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Haloperidol/farmacologia , Hipotálamo/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Piperazinas/farmacologia , Ratos , Ratos Wistar , Tiazóis/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...