Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 597(7877): 489-492, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34552254

RESUMO

Over the past decades, rest-frame ultraviolet (UV) observations have provided large samples of UV luminous galaxies at redshift (z) greater than 6 (refs. 1-3), during the so-called epoch of reionization. While a few of these UV-identified galaxies revealed substantial dust reservoirs4-7, very heavily dust-obscured sources at these early times have remained elusive. They are limited to a rare population of extreme starburst galaxies8-12 and companions of rare quasars13,14. These studies conclude that the contribution of dust-obscured galaxies to the cosmic star formation rate density at z > 6 is sub-dominant. Recent ALMA and Spitzer observations have identified a more abundant, less extreme population of obscured galaxies at z = 3-6 (refs. 15,16). However, this population has not been confirmed in the reionization epoch so far. Here, we report the discovery of two dust-obscured star-forming galaxies at z = 6.6813 ± 0.0005 and z = 7.3521 ± 0.0005. These objects are not detected in existing rest-frame UV data and were discovered only through their far-infrared [C II] lines and dust continuum emission as companions to typical UV-luminous galaxies at the same redshift. The two galaxies exhibit lower infrared luminosities and star-formation rates than extreme starbursts, in line with typical star-forming galaxies at z ≈ 7. This population of heavily dust-obscured galaxies appears to contribute 10-25% to the z > 6 cosmic star formation rate density.

2.
Nature ; 469(7331): 504-7, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21270889

RESUMO

Searches for very-high-redshift galaxies over the past decade have yielded a large sample of more than 6,000 galaxies existing just 900-2,000 million years (Myr) after the Big Bang (redshifts 6 > z > 3; ref. 1). The Hubble Ultra Deep Field (HUDF09) data have yielded the first reliable detections of z ≈ 8 galaxies that, together with reports of a γ-ray burst at z ≈ 8.2 (refs 10, 11), constitute the earliest objects reliably reported to date. Observations of z ≈ 7-8 galaxies suggest substantial star formation at z > 9-10 (refs 12, 13). Here we use the full two-year HUDF09 data to conduct an ultra-deep search for z ≈ 10 galaxies in the heart of the reionization epoch, only 500 Myr after the Big Bang. Not only do we find one possible z ≈ 10 galaxy candidate, but we show that, regardless of source detections, the star formation rate density is much smaller (∼10%) at this time than it is just ∼200 Myr later at z ≈ 8. This demonstrates how rapid galaxy build-up was at z ≈ 10, as galaxies increased in both luminosity density and volume density from z ≈ 10 to z ≈ 8. The 100-200 Myr before z ≈ 10 is clearly a crucial phase in the assembly of the earliest galaxies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...