Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(45): eadd3854, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36351013

RESUMO

Robust and accurate acceleration tracking remains a challenge in many fields. For geophysics and economic geology, precise gravity mapping requires onboard sensors combined with accurate positioning and navigation systems. Cold atom-based quantum inertial sensors can potentially provide these high-precision instruments. However, current scalar instruments require precise alignment with vector quantities. Here, we present the first hybrid three-axis accelerometer exploiting the quantum advantage to measure the full acceleration vector by combining three orthogonal atom interferometer measurements with a classical navigation-grade accelerometer triad. Its ultralow bias permits tracking the acceleration vector over long time scales, yielding a 50-fold improvement in stability (6 × 10-8 g) over our classical accelerometers. We record the acceleration vector at a high data rate (1 kHz), with absolute magnitude accuracy below 10 µg, and pointing accuracy of 4 µrad. This paves the way toward future strapdown applications with quantum sensors and highlights their potential as future inertial navigation units.

2.
Sci Rep ; 12(1): 19000, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347902

RESUMO

The Matter-wave laser Interferometric Gravitation Antenna (MIGA) is an underground instrument using cold-atom interferometry to perform precision measurements of gravity gradients and strains. Following its installation at the low noise underground laboratory LSBB in the South-East of France, it will serve as a prototype for gravitational wave detectors with a horizontal baseline of 150 meters. Three spatially separated cold-atom interferometers will be driven by two common counter-propagating lasers to perform a measurement of the gravity gradient along this baseline. This article presents the cold-atom sources of MIGA, focusing on the design choices, the realization of the systems, the performances and the integration within the MIGA instrument.

3.
Exp Astron (Dordr) ; 51(3): 1677-1694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744306

RESUMO

Recently, the European Commission supported by many European countries has announced large investments towards the commercialization of quantum technology (QT) to address and mitigate some of the biggest challenges facing today's digital era - e.g. secure communication and computing power. For more than two decades the QT community has been working on the development of QTs, which promise landmark breakthroughs leading to commercialization in various areas. The ambitious goals of the QT community and expectations of EU authorities cannot be met solely by individual initiatives of single countries, and therefore, require a combined European effort of large and unprecedented dimensions comparable only to the Galileo or Copernicus programs. Strong international competition calls for a coordinated European effort towards the development of QT in and for space, including research and development of technology in the areas of communication and sensing. Here, we aim at summarizing the state of the art in the development of quantum technologies which have an impact in the field of space applications. Our goal is to outline a complete framework for the design, development, implementation, and exploitation of quantum technology in space.

4.
Opt Express ; 28(26): 39112-39127, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379468

RESUMO

There are several applications for enhancement cavities where a beam of large size (several millimeters) resonates, in particular in atomic physics. However, reaching large beam waists in a compact geometry (less than a meter long) typically brings the resonator close to the degeneracy limit. Here we experimentally study a degenerate optical cavity, 44-cm long and consisting of two flat mirrors placed in the focal planes of a lens, in a regime of intermediate finesse (∼150). We study the impact of the longitudinal misalignement on the optical gain, for different input beam waists up to 5.6 mm, and find data consistent with the prediction of a model based on ABCD propagation of Gaussian beams. We reach an optical gain of 26 for a waist of 1.4 mm, which can have an impact on several applications, in particular atom interferometry. We numerically investigate the optical gain reduction for large beam waists using the angular spectrum method to consider the effects of optical aberrations, which play an important role in such a degenerate cavity. Our calculations quantitatively reproduce the experimental data and will provide a key tool for designing enhancement cavities close to the degeneracy limit. As an illustration, we discuss the application of this resonator geometry to the enhancement of laser beams with top-hat intensity profiles.

5.
Sci Rep ; 8(1): 12300, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120334

RESUMO

Gravimetry is a well-established technique for the determination of sub-surface mass distribution needed in several fields of geoscience, and various types of gravimeters have been developed over the last 50 years. Among them, quantum gravimeters based on atom interferometry have shown top-level performance in terms of sensitivity, long-term stability and accuracy. Nevertheless, they have remained confined to laboratories due to their complex operation and high sensitivity to the external environment. Here we report on a novel, transportable, quantum gravimeter that can be operated under real world conditions by non-specialists, and measure the absolute gravitational acceleration continuously with a long-term stability below 10 nm.s-2 (1 µGal). It features several technological innovations that allow for high-precision gravity measurements, while keeping the instrument light and small enough for field measurements. The instrument was characterized in detail and its stability was evaluated during a month-long measurement campaign.

6.
Nat Commun ; 7: 13786, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941928

RESUMO

Quantum technology based on cold-atom interferometers is showing great promise for fields such as inertial sensing and fundamental physics. However, the finite free-fall time of the atoms limits the precision achievable on Earth, while in space interrogation times of many seconds will lead to unprecedented sensitivity. Here we realize simultaneous 87Rb-39K interferometers capable of operating in the weightless environment produced during parabolic flight. Large vibration levels (10-2 g Hz-1/2), variations in acceleration (0-1.8 g) and rotation rates (5° s-1) onboard the aircraft present significant challenges. We demonstrate the capability of our correlated quantum system by measuring the Eötvös parameter with systematic-limited uncertainties of 1.1 × 10-3 and 3.0 × 10-4 during standard- and microgravity, respectively. This constitutes a fundamental test of the equivalence principle using quantum sensors in a free-falling vehicle. Our results are applicable to inertial navigation, and can be extended to the trajectory of a satellite for future space missions.

7.
Opt Lett ; 37(6): 1005-7, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22446205

RESUMO

We report the relative frequency stabilization of a distributed feedback erbium-doped fiber laser on an optical cavity by serrodyne frequency shifting. A correction bandwidth of 2.3 MHz and a dynamic range of 220 MHz are achieved, which leads to a strong robustness against large disturbances up to high frequencies. We demonstrate that serrodyne frequency shifting reaches a higher correction bandwidth and lower relative frequency noise level compared to a standard acousto-optical modulator based scheme. Our results allow us to consider promising applications in the absolute frequency stabilization of lasers on optical cavities.

9.
Opt Express ; 18(25): 26469-74, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21164997

RESUMO

We demonstrate a fast and direct calibration method for systems using a single laser for optical tweezers and particle position detection. The method takes direct advantage of back-focal-plane interferometry measuring not an absolute but a differential position, i.e. the position of the trapped particle relative to the center of the optical tweezers. Therefore, a fast step-wise motion of the optical tweezers yields the impulse response of the trapped particle. Calibration parameters such as the detector's spatial and temporal response and the spring constant of the optical tweezers then follow readily from fitting the measured impulse response.


Assuntos
Algoritmos , Interferometria/instrumentação , Interferometria/métodos , Pinças Ópticas/normas , Calibragem , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento/instrumentação , Análise de Falha de Equipamento/métodos , Interferometria/normas , Internacionalidade , Estresse Mecânico
10.
Appl Opt ; 49(16): 3092-5, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20517380

RESUMO

We demonstrate a compact laser source suitable for trapping and cooling potassium. By frequency doubling a fiber laser diode at 1534 nm in a waveguide, we produce 767 nm laser light. A current modulation of the diode allows us to generate the two required frequencies for cooling in a simple and robust apparatus. We successfully used this laser source to trap K39.

11.
Phys Rev Lett ; 100(18): 183901, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18518373

RESUMO

We report fine-tuning of nonlinear interactions in a solid-state ring laser gyroscope by vibrating the gain medium along the cavity axis. We demonstrate both experimentally and theoretically that nonlinear interactions vanish for some values of the vibration parameters, leading to quasi-ideal rotation sensing. We eventually point out that our conclusions can be mapped onto other subfields of physics such as ring-shaped superfluid configurations, where nonlinear interactions could be tuned by using Feshbach resonance.

12.
Nature ; 453(7197): 891-4, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18548065

RESUMO

In 1958, Anderson predicted the localization of electronic wavefunctions in disordered crystals and the resulting absence of diffusion. It is now recognized that Anderson localization is ubiquitous in wave physics because it originates from the interference between multiple scattering paths. Experimentally, localization has been reported for light waves, microwaves, sound waves and electron gases. However, there has been no direct observation of exponential spatial localization of matter waves of any type. Here we observe exponential localization of a Bose-Einstein condensate released into a one-dimensional waveguide in the presence of a controlled disorder created by laser speckle. We operate in a regime of pure Anderson localization, that is, with weak disorder-such that localization results from many quantum reflections of low amplitude-and an atomic density low enough to render interactions negligible. We directly image the atomic density profiles as a function of time, and find that weak disorder can stop the expansion and lead to the formation of a stationary, exponentially localized wavefunction-a direct signature of Anderson localization. We extract the localization length by fitting the exponential wings of the profiles, and compare it to theoretical calculations. The power spectrum of the one-dimensional speckle potentials has a high spatial frequency cutoff, causing exponential localization to occur only when the de Broglie wavelengths of the atoms in the expanding condensate are greater than an effective mobility edge corresponding to that cutoff. In the opposite case, we find that the density profiles decay algebraically, as predicted in ref. 13. The method presented here can be extended to localization of atomic quantum gases in higher dimensions, and with controlled interactions.

13.
Phys Rev Lett ; 97(9): 093902, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17026363

RESUMO

We report the theoretical and experimental investigation of the effects of mode coupling in a resonant macroscopic quantum device, in the case of a solid-state ring laser. This is achieved by introducing an additional coupling source whose interplay with the already-existing nonlinear effects ensures the coexistence of two counterpropagating cavity modes yielding a rotation-sensitive beat note. The determination of the condition for rotation sensing, both theoretically and experimentally, allows a quantitative study of the role of various mode-coupling mechanisms, in particular, the gain-induced mode coupling. We point out the connection between our work and the theoretical work on mode coupling in superfluid devices. This work opens up the possibility of new types of active rotation sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...