Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 49(12): 3143-3153, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34431016

RESUMO

Personalized models of cardiac electrophysiology (EP) that match clinical observation with high fidelity, referred to as cardiac digital twins (CDTs), show promise as a tool for tailoring cardiac precision therapies. Building CDTs of cardiac EP relies on the ability of models to replicate the ventricular activation sequence under a broad range of conditions. Of pivotal importance is the His-Purkinje system (HPS) within the ventricles. Workflows for the generation and incorporation of HPS models are needed for use in cardiac digital twinning pipelines that aim to minimize the misfit between model predictions and clinical data such as the 12 lead electrocardiogram (ECG). We thus develop an automated two stage approach for HPS personalization. A fascicular-based model is first introduced that modulates the endocardial Purkinje network. Only emergent features of sites of earliest activation within the ventricular myocardium and a fast-conducting sub-endocardial layer are accounted for. It is then replaced by a topologically realistic Purkinje-based representation of the HPS. Feasibility of the approach is demonstrated. Equivalence between both HPS model representations is investigated by comparing activation patterns and 12 lead ECGs under both sinus rhythm and right-ventricular apical pacing. Predominant ECG morphology is preserved by both HPS models under sinus conditions, but elucidates differences during pacing.


Assuntos
Técnicas Eletrofisiológicas Cardíacas , Sistema de Condução Cardíaco/fisiopatologia , Modelos Cardiovasculares , Medicina de Precisão , Algoritmos , Fascículo Atrioventricular/fisiopatologia , Eletrocardiografia , Humanos , Imageamento por Ressonância Magnética , Ramos Subendocárdicos/fisiopatologia
2.
Europace ; 23(23 Suppl 1): i71-i79, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33463686

RESUMO

AIMS: Clinical observations suggest that the Purkinje network can be part of anatomical re-entry circuits in monomorphic or polymorphic ventricular arrhythmias. However, significant conduction delay is needed to support anatomical re-entry given the high conduction velocity within the Purkinje network. METHODS AND RESULTS: We investigated, in computer models, whether damage rendering the Purkinje network as either an active lesion with slow conduction or a passive lesion with no excitable ionic channel, could explain clinical observations. Active lesions had compromised sodium current and a severe reduction in gap junction coupling, while passive lesions remained coupled by gap junctions, but modelled the membrane as a fixed resistance. Both types of tissue could provide significant delays of over 100 ms. Electrograms consistent with those obtained clinically were reproduced. However, passive tissue could not support re-entry as electrotonic coupling across the delay effectively increased the proximal refractory period to an extremely long interval. Active tissue, conversely, could robustly maintain re-entry. CONCLUSION: Formation of anatomical re-entry using the Purkinje network is possible through highly reduced gap junctional coupling leading to slowed conduction.


Assuntos
Arritmias Cardíacas , Ramos Subendocárdicos , Simulação por Computador , Humanos
3.
Heart Rhythm ; 17(11): 1922-1929, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32603781

RESUMO

BACKGROUND: His-bundle pacing (HBP) and left bundle pacing (LBP) are emerging as novel delivery methods for cardiac resynchronization therapy (CRT) in heart failure patients with left bundle branch block (LBBB). HBP and LBP have never been compared to biventricular endocardial (BiV-endo) pacing. Furthermore, there are indications of negative effects of LBP on right ventricular (RV) activation times (ATs), but these effects have not been quantified. OBJECTIVE: The purpose of this study was to compare changes in ventricular activation induced by HBP, LBP, left ventricular (LV) septal pacing, BiV-endo, and biventricular epicardial (BiV-epi) pacing using computer simulations. METHODS: We simulated ventricular activation on 24 four-chamber heart meshes inclusive of the His-Purkinje network in the presence of LBBB. We simulated BiV-epi pacing, BiV-endo pacing with left ventricular (LV) lead at the lateral wall, BiV-endo pacing with LV lead at the LV septum, HBP, and LBP. RESULTS: HBP was superior to BiV-endo and BiV-epi in terms of reduction in LV ATs and interventricular dyssynchrony (P <.05). LBP reduced LV ATs but not interventricular dyssynchrony compared to BiV-epi and BiV-endo pacing. RV latest AT was higher with LBP than with HBP (141.3 ± 10.0 ms vs 111.8 ± 10.4 ms). Optimizing AV delay during LBP reduced RV latest AT (104.7 ± 8.7 ms) and led to comparable response to HBP. In case of complete AV block, BiV-endo septal pacing was equivalent to LBP. CONCLUSION: HBP is superior to BiV-epi and BiV-endo. To achieve comparable response to HBP, AV delay optimization during LBP is required in order to reduce RV ATs.


Assuntos
Fascículo Atrioventricular/fisiopatologia , Bloqueio de Ramo/terapia , Terapia de Ressincronização Cardíaca/métodos , Eletrocardiografia , Ventrículos do Coração/fisiopatologia , Função Ventricular Esquerda/fisiologia , Idoso , Bloqueio de Ramo/fisiopatologia , Cateterismo Cardíaco/métodos , Endocárdio , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...