Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 145(2): 024507, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27421420

RESUMO

In this work we report an analysis of the bulk phase of 2-methoxyethylammonium nitrate based on ab initio molecular dynamics. The structural and dynamical features of the ionic liquid have been characterized and the computational findings have been compared with the experimental X-ray diffraction patterns, with infrared spectroscopy data, and with the results obtained from molecular dynamics simulations. The experimental infrared spectrum was interpreted with the support of calculated vibrational density of states as well as harmonic frequency calculations of selected gas phase clusters. Particular attention was addressed to the high frequency region of the cation (ω > 2000 cm(-1)), where the vibrational motions involve the NH3+ group responsible for hydrogen bond formation, and to the frequency range 1200-1400 cm(-1) where the antisymmetric stretching mode (ν3) of nitrate is found. Its multiple absorption lines in the liquid arise from the removal of the degeneracy present in the D3h symmetry of the isolated ion. Our ab initio molecular dynamics leads to a rationalization of the frequency shifts and splittings, which are inextricably related to the structural modifications induced by a hydrogen bonding environment. The DFT calculations lead to an inhomogeneous environment.

2.
J Chem Phys ; 137(11): 114107, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22998249

RESUMO

The description of the electronic structure and magnetic properties of multi-centers transition metal complexes, especially of mixed-valence compounds, still represents a challenge for density functional theory (DFT) methods. The energies and the geometries of the correctly symmetrized low-spin ground state are estimated using the Heisenberg-Dirac-van Vleck spin Hamiltonian within the extended broken symmetry method introduced by Marx and co-workers [Nair et al., J. Chem. Theory Comput. 4, 1174-1188 (2008)]. In the present work we extend the application of this technique, originally implemented using the DFT+U scheme, to the use of hybrid functionals, investigating the ground-state properties of di-iron and di-manganese compounds. The calculated magnetic coupling and vibrational properties of ferredoxin molecular models are in good agreements with experimental results and DFT+U calculations. Six different mixed-valence Mn(III)-Mn(IV) compounds have been extensively studied optimizing the geometry in low-spin, high-spin, and broken-symmetry states and with different functionals. The magnetic coupling constants calculated by the extended broken symmetry approach using B3LYP functional presents a remarkable agreement with the experimental results, revealing that the proposed methodology provides a consistent and accurate DFT approach to the electronic structure of multi-centers transition metal complexes.


Assuntos
Fenômenos Magnéticos , Compostos Organometálicos/química , Teoria Quântica , Vibração , Ferro/química , Manganês/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...