Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35011505

RESUMO

Under normal physiological conditions, the kynurenine pathway (KP) plays a critical role in generating cellular energy and catabolizing tryptophan. Under inflammatory conditions, however, there is an upregulation of the KP enzymes, particularly kynurenine 3-monooxygenase (KMO). KMO has garnered much attention due to its production of toxic metabolites that have been implicated in many diseases and disorders. With many of these illnesses having an inadequate or modest treatment, there exists a need to develop KMO inhibitors that reduce the production of these toxic metabolites. Though prior efforts to find an appropriate KMO inhibitor were unpromising, the development of a KMO crystal structure has provided the opportunity for a rational structure-based design in the development of inhibitors. Therefore, the purpose of this review is to describe the kynurenine pathway, the kynurenine 3-monooxygenase enzyme, and KMO inhibitors and their potential candidacy for clinical use.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Quinurenina 3-Mono-Oxigenase , Cinurenina , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Cinurenina/química , Cinurenina/metabolismo , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/biossíntese , Quinurenina 3-Mono-Oxigenase/química , Relação Estrutura-Atividade
2.
Med Chem Res ; 29(1): 126-135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435125

RESUMO

Inflammasomes are multiprotein assemblies that produce robust inflammatory responses upon stimulation with pathogen- and/or danger-associated molecular patterns. Uncontrolled inflammasome activation has been linked to the pathophysiology of a wide array of disorders including life-threatening pathogenic infections, e.g., Francisella tularensis. There has been a great deal of interest in the development of small molecule inflammasome inhibitors. Using computational modeling based on chalcone derivatives, we have developed novel tertiary sulfonylurea compounds as inhibitors of the NLRP3 inflammasome. The polar enone functional alert of chalcone was replaced with a sulfonylurea scaffold while maintaining the relative positions of the two aromatic rings. These compounds were evaluated for their ability to inhibit NLRP3 and AIM2 inflammasome activation triggered by Francisella tularensis infection.

3.
Curr Top Med Chem ; 20(10): 883-900, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32091335

RESUMO

Cancer is a devastating disease that has plagued humans from ancient times to this day. After decades of slow research progress, promising drug development, and the identification of new targets, the war on cancer was launched, in 1972. The P13K/Akt pathway is a growth-regulating cellular signaling pathway, which in many human cancers is over-activated. Studies have demonstrated that a decrease in Akt activity by Akt inhibitors is associated with a reduction in tumor cell proliferation. There have been several promising drug candidates that have been studied, including but not limited to ipatasertib (RG7440), 1; afuresertib (GSK2110183), 2; uprosertib (GSK2141795), 3; capivasertib (AZD5363), 4; which reportedly bind to the ATP active site and inhibit Akt activity, thus exerting cytotoxic and antiproliferative activities against human cancer cells. For most of the compounds discussed in this review, data from preclinical studies in various cancers suggest a mechanistic basis involving hyperactivated Akt signaling. Allosteric inhibitors are also known to alter the activity of kinases. Perifosine (KRX- 0401), 5, an alkylphospholipid, is known as the first allosteric Akt inhibitor to enter clinical development and is mechanistically characterized as a PH-domain dependent inhibitor, non-competitive with ATP. This results in a reduction in Akt enzymatic and cellular activities. Other small molecule (MK- 2206, 6, PHT-427, Akti-1/2) inhibitors with a similar mechanism of action, alter Akt activity through the suppression of cell growth mediated by the inhibition of Akt membrane localization and subsequent activation. The natural product solenopsin has been identified as an inhibitor of Akt. A few promising solenopsin derivatives have emerged through pharmacophore modeling, energy-based calculations, and property predictions.


Assuntos
Antineoplásicos/química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Antineoplásicos/farmacologia , Benzilaminas/química , Benzilaminas/farmacologia , Linhagem Celular Tumoral , Diaminas/química , Diaminas/farmacologia , Desenho de Fármacos , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipídeos/química , Piperazinas/química , Piperazinas/farmacologia , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Pirróis/química , Pirróis/farmacologia , Quinoxalinas/química , Quinoxalinas/farmacologia , Transdução de Sinais , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacologia , Tiadiazóis/química , Tiadiazóis/farmacologia , Tiofenos/química , Tiofenos/farmacologia
4.
Curr Top Med Chem ; 20(10): 901-909, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32101127

RESUMO

Human DNA is a very sensitive macromolecule and slight changes in the structure of DNA can have disastrous effects on the organism. When nucleotides are modified, or changed, the resulting DNA sequence can lose its information, if it is part of a gene, or it can become a problem for replication and repair. Human cells can regulate themselves by using a process known as DNA methylation. This methylation is vitally important in cell differentiation and expression of genes. When the methylation is uncontrolled, however, or does not occur in the right place, serious pathophysiological consequences may result. Excess methylation causes changes in the conformation of the DNA double helix. The secondary structure of DNA is highly dependent upon the sequence. Therefore, if the sequence changes slightly the secondary structure can change as well. These slight changes will then cause the doublestranded DNA to be more open and available in some places where large adductions can come in and react with the DNA base pairs. Computer models have been used to simulate a variety of biological processes including protein function and binding, and there is a growing body of evidence that in silico methods can shed light on DNA methylation. Understanding the anomeric effect that contributes to the structural and conformational flexibility of furanose rings through a combination of quantum mechanical and experimental studies is critical for successful molecular dynamic simulations.


Assuntos
DNA/química , Pareamento de Bases , Sequência de Bases , Biologia Computacional , Metilação de DNA , Teoria da Densidade Funcional , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Teoria Quântica , Relação Estrutura-Atividade , Termodinâmica
5.
Anticancer Res ; 39(10): 5329-5338, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570426

RESUMO

BACKGROUND/AIM: The P13K/Akt signaling pathway is a growth-regulating cellular pathway that is constitutively activated in a variety of human cancers. In previous studies, we reported that a solenopsin analog, compound B (MU-06-SC-608-7), shows inhibitory effects on Akt phosphorylation at a key activation site, as well as on proliferation of tumorigenic cells at sub-micromolar concentrations. The purpose of this study was to evaluate the effect of compound B on downstream effectors of Akt kinase, phosphorylation of Akt at a second activation site, Akt kinase activity in vitro, tumorigenic cell viability and other signaling pathways. MATERIALS AND METHODS: Western blot analyses were performed using WBras1 epithelial and H2009 human carcinoma cells and cell viability assays were performed on H2009 cells. In vitro Akt kinase assays were performed using a commercially available kit. RESULTS: Compound B decreased the phosphorylation of Akt at the Thr308 activation site and key downstream effectors of Akt kinase, but did not directly inhibit Akt kinase. Substantial decreases in cell viability were observed at concentrations above 5 µM. No effect was seen on ERK or JNK pathways. CONCLUSION: The results earmark this compound for further studies as a potential targeted cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos
6.
Pharmacol Biochem Behav ; 181: 37-45, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30998954

RESUMO

There is increasing support for the potential clinical use of compounds that interact with serotonin 2A (5-HT2A) receptors. It is therefore of interest to discover novel compounds that interact with 5-HT2A receptors. In the present study, we used computational chemistry to identify critical ligand structural features of 5-HT2A receptor binding and function. Query of compound databases using those ligand features revealed the adrenergic receptor antagonist carvedilol as a high priority match. As carvedilol is used clinically for cardiovascular diseases, we conducted experiments to assess whether it has any interactions with 5-HT2A receptors. In vitro experiments demonstrated that carvedilol has high nanomolar affinity for 5-HT2A receptors. In vivo experiments demonstrated that carvedilol increases the ethanol-induced loss of the righting reflex and suppresses operant responding in mice, and that these effects are attenuated by pretreatment with the selective 5-HT2A receptor antagonist M100907. Moreover, carvedilol did not induce the head-twitch response in mice, suggesting a lack of psychedelic effects. However, carvedilol did not activate canonical 5-HT2A receptor signaling pathways and antagonized serotonin-mediated signaling. It also reduced the head-twitch response induced by 2,5-Dimethoxy-4-iodoamphetamine, suggesting potential in vivo antagonism, allosteric modulation, or functional bias. These data suggest that carvedilol has functionally relevant interactions with 5-HT2A receptors, providing a novel mechanism of action for a clinically used compound. However, our findings do not clearly delineate the precise mechanism of action of carvedilol at 5-HT2A receptors, and additional experiments are needed to elucidate the role of 5-HT2A receptors in the behavioral and clinical effects of carvedilol.


Assuntos
Antagonistas Adrenérgicos/química , Antagonistas Adrenérgicos/farmacologia , Carvedilol/química , Carvedilol/farmacologia , Química Computacional/métodos , Descoberta de Drogas/métodos , Receptor 5-HT2A de Serotonina/química , Antagonistas Adrenérgicos/administração & dosagem , Antagonistas Adrenérgicos/metabolismo , Anfetaminas/administração & dosagem , Anfetaminas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Sítios de Ligação , Carvedilol/administração & dosagem , Carvedilol/metabolismo , Fluorbenzenos/farmacologia , Células HEK293 , Humanos , Dietilamida do Ácido Lisérgico/química , Masculino , Camundongos , Modelos Animais , Modelos Moleculares , Piperidinas/farmacologia , Ligação Proteica , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Agonistas do Receptor de Serotonina/administração & dosagem , Agonistas do Receptor de Serotonina/farmacologia , Transfecção
7.
Front Mol Biosci ; 6: 3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800661

RESUMO

The kynurenine pathway is the major route for tryptophan metabolism in mammals. Several of the metabolites in the kynurenine pathway, however, are potentially toxic, particularly 3-hydroxykynurenine, 3-hydroxyanthranilic acid, and quinolinic acid. Quinolinic acid (QUIN) is an excitotoxic agonist at the NMDA receptor, and has been shown to be elevated in neurodegenerative diseases such as Alzheimer's Disease and Huntington's Disease. Thus, inhibitors of enzymes in the kynurenine pathway may be valuable to treat these diseases. Kynurenine monooxygenase (KMO) is the ideal target for an inhibitor, since inhibition of it would be expected to decrease the toxic metabolites and increase kynurenic acid (KynA), which is neuroprotective. The first generation of KMO inhibitors was based on structural analogs of the substrate, L-kynurenine. These compounds showed reduction of QUIN and increased KynA in vivo in rats. After the determination of the x-ray crystal structure of yeast KMO, inhibitor design has been facilitated. Benzisoxazoles with sub-nM binding to KMO have been developed recently. Some KMO ligands promote the reaction of NADPH with O2 without hydroxylation, resulting in uncoupled formation of H2O2. This potentially toxic side reaction should be avoided in the design of drugs targeting the kynurenine pathway for treatment of neurodegenerative disorders.

8.
Bioorg Med Chem Lett ; 28(19): 3247-3250, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30143420

RESUMO

The P13K/Akt pathway is a growth-regulating cellular signaling pathway that is over-activated in numerous human cancers. A novel series of Akt pathway inhibitors were identified using iterative pharmacophore modeling, energy-based calculations, and property predictions of known Akt inhibitors. Inhibitory effects on activation of Akt and growth of human neoplastic cells are reported. Results show variable inhibitory effects of three selected compounds on Akt phosphorylation at a key activation site, and on proliferation of tumorigenic cells. We identify one lead compound with potent inhibitory activity on both human carcinoma cell proliferation and Akt activation.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Alcaloides/química , Alcaloides/farmacologia , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Modelos Moleculares , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
9.
Bioorg Med Chem ; 26(5): 989-998, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29426628

RESUMO

NADPH oxidases (Nox enzymes) are critical mediators of both physiologic and pathophysiologic processes. Nox enzymes catalyze NADPH-dependent generation of reactive oxygen species (ROS), including superoxide and hydrogen peroxide. Until recently, Nox4 was proposed to be involved exclusively in normal physiologic functions. Compelling evidence, however, suggests that Nox4 plays a critical role in fibrosis, as well as a host of pathologies and diseases. These considerations led to a search for novel, small molecule inhibitors of this important enzyme. Ultimately, a series of novel tertiary sulfonylureas (23-25) was designed using pharmacophore modeling, synthesized, and evaluated for inhibition of Nox4-dependent signaling.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/síntese química , NADPH Oxidase 4/antagonistas & inibidores , Compostos de Sulfonilureia/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , NADPH Oxidase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos de Sulfonilureia/síntese química , Compostos de Sulfonilureia/farmacologia
10.
Bioorg Med Chem Lett ; 27(8): 1705-1708, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28302400

RESUMO

Kynurenine monooxygenase (KMO) is a potential drug target for treatment of neurodegenerative disorders such as Huntington's and Alzheimer's diseases. We have evaluated substituted kynurenines as substrates or inhibitors of KMO from Cytophaga hutchinsonii. Kynurenines substituted with a halogen at the 5-position are excellent substrates, with values of kcat and kcat/Km comparable to or higher than kynurenine. However, kynurenines substituted in the 3-position are competitive inhibitors, with KI values lower than the Km for kynurenine. Bromination also enhances inhibition, and 3,5-dibromokynurenine is a potent competitive inhibitor with a KI value of 1.5µM. A pharmacophore model of KMO was developed, and predicted that 3,4-dichlorohippuric acid would be an inhibitor. The KI for this compound was found to be 34µM, thus validating the pharmacophore model. We are using these results and our model to design more potent inhibitors of KMO.


Assuntos
Cytophaga/enzimologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Cinurenina/análogos & derivados , Cinurenina/farmacologia , Inibidores Enzimáticos/metabolismo , Halogenação , Humanos , Cinética , Cinurenina/metabolismo , Quinurenina 3-Mono-Oxigenase/metabolismo , Modelos Moleculares , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/metabolismo , Especificidade por Substrato
13.
Curr Top Med Chem ; 16(13): 1506-29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26369819

RESUMO

There has been a revolution in the development of effective, small-molecule anticoagulants and antiplatelet agents. Numerous trypsin-like serine proteases have been under active pursuit as therapeutic targets. Important examples include thrombin, factor VIIa, factor Xa, and ß-tryptase with indications ranging from thrombosis and inflammation to asthma and chronic obstructive pulmonary disease (COPD). Trypsin-like serine proteases exhibit a highly similar tertiary folding pattern, especially for the region near the substrate binding pocket that includes the conserved catalytic triad consisting of histidine 57, aspartic acid 102, and serine 195. A rich collection of X-ray structures for many trypsin-like serine proteases is available, which greatly facilitated the optimization of small organic inhibitors as therapeutic agents. The present review surveyed those inhibitors disclosed in peer-reviewed scientific journals and patent publications with a special focus on structural features and protein-inhibitor interactions that implicated the inhibitor optimization process. The role played by the residue 190 of trypsin-like serine proteases is critical. While many inhibitors without a basic group have progressed into the clinic for ones with alanine 190, the task for those with serine 190 remains extremely challenging, if not impossible. In addition to warfarin, heparin, and low molecular weight heparins (LMWHs), treatment options have expanded with the development and approval of the new oral anticoagulants (NOACs). The NOACs are superior to vitamin K antagonists in terms of rapid onset, pharmacokinetics, drug/food interactions, and regular coagulation monitoring; but one serious drawback is the lack of an effective antidote at this time. Apixaban (Eliquis), rivaroxaban (Xarelto), and edoxaban (Savaysa) are the new Xa inhibitors that have been recently approved by the U.S. FDA and are in current clinical practice. These drugs bind to the active site of factor Xa (fXa) which prevents the conversion of prothrombin to thrombin. In addition, dabigatran etexikate (Pradaxa), the direct thrombin inhibitor (fIIa) is also now widely prescribed.


Assuntos
Anticoagulantes/química , Anticoagulantes/uso terapêutico , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico , Administração Oral , Anticoagulantes/administração & dosagem , Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Humanos , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade
14.
Curr Top Med Chem ; 16(13): 1478-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26369821

RESUMO

Angiogenesis has been identified as a crucial process in the development and spread of cancers. There are many regulators of angiogenesis which are not yet fully understood. Methionine aminiopeptidase is a metalloenzyme with two structurally distinct forms in humans, Type-1 (MetAP-1) and Type-2 (MetAP-2). It has been shown that small molecule inhibitors of MetAP-2 suppress endothelial cell proliferation. The initial discovery by Donald Ingber of MetAP-2 inhibition as a potential target in angiogenesis began with a fortuitous observation similar to the discovery of penicillin activity by Sir Alexander Fleming. From a drug design perspective, MetAP-2 is an attractive target. Fumagillin and ovalicin, known natural products, bind with IC50 values in low nanomolar concentrations. Crystal structures of the bound complexes provide 3-dimensional coordinates for advanced computational studies. More recent discoveries have shown other biological activities for MetAP-2 inhibition, which has generated new interests in the design of novel inhibitors. Semisynthetic fumagillin derivatives such as AGM-1470 (TNP-470) have been shown to have better drug properties, but have not been very successful in clinical trials. The rationale and development of novel multicyclic analogs of fumagillin are reviewed.


Assuntos
Aminopeptidases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Glicoproteínas/antagonistas & inibidores , Neovascularização Patológica/tratamento farmacológico , Aminopeptidases/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Cicloexanos/química , Cicloexanos/farmacologia , Cicloexanos/uso terapêutico , Inibidores Enzimáticos/química , Glicoproteínas/metabolismo , Humanos , Metionil Aminopeptidases , Modelos Moleculares , Conformação Molecular , Neovascularização Patológica/metabolismo , O-(Cloroacetilcarbamoil)fumagilol , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico
16.
Vasc Cell ; 7: 5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26015865

RESUMO

BACKGROUND: (-)-Solenopsin A is a piperidine alkaloid that is a component of the venom of the fire ant Solenopsis invicta. Previously, we have demonstrated that solenopsin exhibit anti-angiogenic activity and downregulate phosphoinositol-3 kinase (PI3K) in the p53 deficient renal cell carcinoma cell line 786-O. Solenopsin has structural similarities to ceramide, a major endogenous regulator of cell signaling and cancer therapy induced apoptosis. METHODS: Different analogs of solenopsin were synthesized in order to explore structure-activity relationships. The anti-proliferative effect of solenopsin and analogs was tested on six different cell lines, including three tumor cell lines, two normal cutaneous cell lines, and one immortalized hyperproliferative cell line. FRET-based reporters were used to study the affect of solenopsin and analogs on Akt activity and PDK1 activation and sucrose density gradient fractionation was performed to examine recruitment of PTEN to membrane rafts. Western-blotting was used to evaluate the affect of solenopsin and analogs on the Akt and the MAPK 44/42 pathways in three different tumor cell lines. Measurement of cellular oxygen consumption rate together with autophagy staining was performed to study mitochondrial function. Finally, the affect of solenopsin and analogs on ROS production was investigated. RESULTS: In this paper we demonstrate that solenopsin analogs with potent anti-proliferative effects can be synthesized from inexpensive dimethylpyridines. To determine whether solenopsin and analogs act as ceramide analogs, we examined the effect of solenopsin and analogs on two stereotypic sites of ceramide activity, namely at lipid rafts and mitochondria. We found that native solenopsin, (-)-solenopsin A, inhibits functional Akt activity and PDK1 activation in lipid rafts in a similar fashion as ceramide. Both cis and trans analogs of solenopsin reduce mitochondrial oxygen consumption, increase reactive oxygen, and kill tumor cells with elevated levels of Akt phosphorylation. However, only solenopsin induces mitophagy, like ceramide. CONCLUSIONS: The requirements for ceramide induced mitophagy and inhibition of Akt activity and PDK1 activation in lipid rafts are under strict stereochemical control. The naturally occurring (-)-solenopsin A mimic some of the functions of ceramide and may be therapeutically useful in the treatment of hyperproliferative and malignant disorders of the skin, even in the presence of elevated levels of Akt.

17.
J Chem Inf Model ; 54(5): 1269-83, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24745881

RESUMO

For over a century since the early 1900s, Paul Ehrlich was credited with originating the concept of pharmacophores. This was challenged by John Van Drie in 2007 due to the fact that Ehrlich did not use the word "pharmacophore" in his writings. Van Drie claimed that the attribution of the pharmacophore concept to Ehrlich was due to an erroneous citation made by Ariëns in a 1966 paper, and instead he claimed, Lemont B. Kier developed the pharmacophore concept (in the modern sense, as defined by the IUPAC) during 1967-1971. There are two separate issues that may have triggered this conflict. The first one is the shift in the meaning of pharmacophore from "chemical groups" to patterns of "abstract features" of a molecule that are responsible for a biological effect. Indeed, the original use of the term is different than the current definition proposed by the IUPAC. The term was redefined in 1960 by Schueler, and this modification formed the basis of IUPAC's modern definition. The second issue is the origin of the "concept" of pharmacophore. While Ehrlich's contemporaries have consistently attributed the origin of the concept to him, the issue is further complicated by the fact that Ehrlich did not use the term pharmacophore in his papers. He, instead, referred to the features of a molecule that are responsible for biological effects as toxophores, while his contemporaries were using the term pharmacophore for the same features. In this paper, we resolve any doubts about the origins of the pharmacophore concept. Our research points to Paul Ehrlich's 1898 paper for originating the concept, which identifies peripheral chemical groups in molecules responsible for binding that leads to the subsequent biological effect, and to Schueler's 1960 book that extends the concept to the modern definition where spatial patterns of abstract features of a molecule define the pharmacophore and are ultimately responsible for the biological effect.


Assuntos
Descoberta de Drogas , Terminologia como Assunto , Modelos Moleculares , Conformação Molecular
18.
Curr Top Med Chem ; 13(11): 1257-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23675934

RESUMO

Understanding the molecular basis of drug action has been an important objective for pharmaceutical scientists. With the increasing speed of computers and the implementation of quantum chemistry methodologies, pharmacodynamic and pharmacokinetic problems have become more computationally tractable. Historically the former has been the focus of drug design, but within the last two decades efforts to understand the latter have increased. It takes about fifteen years and over $1 billion dollars for a drug to go from laboratory hit, through lead optimization, to final approval by the U.S. Food and Drug Administration. While the costs have increased substantially, the overall clinical success rate for a compound to emerge from clinical trials is approximately 10%. Most of the attrition rate can be traced to ADMET (absorption, distribution, metabolism, excretion, and toxicity) problems, which is a powerful impetus to study these issues at an earlier stage in drug discovery. Quantum mechanics offers pharmaceutical scientists the opportunity to investigate pharmacokinetic problems at the molecular level prior to laboratory preparation and testing. This review will provide a perspective on the use of quantum mechanics or a combination of quantum mechanics coupled with other classical methods in the pharmacokinetic phase of drug discovery. A brief overview of the essential features of theory will be discussed, and a few carefully selected examples will be given to highlight the computational methods.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Drogas em Investigação/farmacocinética , Teoria Quântica , Disponibilidade Biológica , Aprovação de Drogas , Desenho de Fármacos , Drogas em Investigação/farmacologia , Humanos , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
19.
Curr Top Med Chem ; 13(11): 1327-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23675939

RESUMO

One of the major reasons for late-stage failure of drug candidates is due to problems uncovered in pharmacokinetics during clinical trials. There is now a general consensus for earlier consideration of these effects in the drug discovery process. Computer-aided design technology provides us with tools to develop predictive models for such pharmacokinetic properties. Among these tools, we focus on pharmacophore modeling techniques in this article. Pharmacophore models that are reported for various cytochrome P450 (CYP) enzymes are reviewed for the isoenzymes CYP1A2, 2B6, 2C9, 2C19, 2D6, 2E1, and 3A4. In addition pharmacophore models for related metabolic processes through CYP19 (aromatase), CYP51 (14.α-lanosterol demethylase), PXR (pregnane X-receptor), and finally for human intrinsic clearance are also reviewed. The models reported by various scientists are schematically represented in the figures in order to visually demonstrate their similarities and differences. The models developed by different researchers or sometimes even by the same research group for different sets of ligands, provide a clear picture of the challenges in coming up with a single model with good predictive values. One of the main reasons for this challenge is related to relatively large size of the active sites and flexibility of the CYP isoenzymes, which results in multiple binding sites. We propose development of multiple- diverse pharmacophore models for each binding mode (as opposed to a single predictive model for each CYP isoenzyme). After scoring and prioritization of the models, we propose the use of a battery of pharmacophore models for each CYP isoenzyme binding mode to computationally obtain a P450 interaction profile for drug candidates early in the drug development cycle, when decisions on their fate can be made before incurring the costs of synthesis and testing.


Assuntos
Desenho Assistido por Computador , Sistema Enzimático do Citocromo P-450/química , Avaliação Pré-Clínica de Medicamentos/métodos , Drogas em Investigação/química , Drogas em Investigação/metabolismo , Receptores de Esteroides/química , Sítios de Ligação , Sistema Enzimático do Citocromo P-450/metabolismo , Desenho de Fármacos , Interações Medicamentosas , Drogas em Investigação/farmacocinética , Ensaios Enzimáticos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Receptor de Pregnano X , Relação Quantitativa Estrutura-Atividade , Receptores de Esteroides/metabolismo , Eletricidade Estática
20.
Curr Pharm Des ; 19(26): 4701-13, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23260023

RESUMO

This review highlights some recent advances in the design and development of matrix metalloproteinase inhibitors, especially those targeting MMP-2, MMP-9, and MMP-13. Various zinc-binding groups and non-zinc-binding groups are discussed. Interactions between residues in the critical S1' specificity pocket and MMP inhibitors are given special attention. The influence of ionization states of hydroxamates and retrohydroxamates on the docking outcome and the presence of zinc ions in the active site are explored in light of enhancing enrichment factors for docking studies. Details are given to structural factors for the development of more selective and more potent MMP inhibitors.


Assuntos
Metaloproteinases da Matriz/efeitos dos fármacos , Inibidores de Proteases/metabolismo , Sequência de Aminoácidos , Metaloproteinases da Matriz/metabolismo , Dados de Sequência Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...