Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2175, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467646

RESUMO

In the ENSEMBLE randomized, placebo-controlled phase 3 trial (NCT04505722), estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19. SARS-CoV-2 Spike sequences were determined from 484 vaccine and 1,067 placebo recipients who acquired COVID-19. In this set of prespecified analyses, we show that in Latin America, VE was significantly lower against Lambda vs. Reference and against Lambda vs. non-Lambda [family-wise error rate (FWER) p < 0.05]. VE differed by residue match vs. mismatch to the vaccine-insert at 16 amino acid positions (4 FWER p < 0.05; 12 q-value ≤ 0.20); significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p < 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 antibody-epitope escape scores and 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccinee sera. VE against severe-critical COVID-19 was stable across most sequence features but lower against the most distant viruses.


Assuntos
Ad26COVS1 , COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Eficácia de Vacinas , Aminoácidos , Anticorpos Antivirais , Anticorpos Neutralizantes
2.
Cell Rep ; 42(6): 112621, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37300832

RESUMO

Continued evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is eroding antibody responses elicited by prior vaccination and infection. The SARS-CoV-2 receptor-binding domain (RBD) E406W mutation abrogates neutralization mediated by the REGEN-COV therapeutic monoclonal antibody (mAb) COVID-19 cocktail and the AZD1061 (COV2-2130) mAb. Here, we show that this mutation remodels the receptor-binding site allosterically, thereby altering the epitopes recognized by these three mAbs and vaccine-elicited neutralizing antibodies while remaining functional. Our results demonstrate the spectacular structural and functional plasticity of the SARS-CoV-2 RBD, which is continuously evolving in emerging SARS-CoV-2 variants, including currently circulating strains that are accumulating mutations in the antigenic sites remodeled by the E406W substitution.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Terapia Combinada de Anticorpos , Anticorpos Antivirais , Anticorpos Neutralizantes , Anticorpos Monoclonais , Glicoproteína da Espícula de Coronavírus , Testes de Neutralização
3.
iScience ; 26(1): 105726, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36507220

RESUMO

Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity, and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month time frame. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both prefusion and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sublineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants.

4.
Sci Immunol ; 7(78): eadf1421, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36356052

RESUMO

Numerous safe and effective coronavirus disease 2019 vaccines have been developed worldwide that use various delivery technologies and engineering strategies. We show here that vaccines containing prefusion-stabilizing S mutations elicit antibody responses in humans with enhanced recognition of S and the S1 subunit relative to postfusion S as compared with vaccines lacking these mutations or natural infection. Prefusion S and S1 antibody binding titers positively and equivalently correlated with neutralizing activity, and depletion of S1-directed antibodies completely abrogated plasma neutralizing activity. We show that neutralizing activity is almost entirely directed to the S1 subunit and that variant cross-neutralization is mediated solely by receptor binding domain-specific antibodies. Our data provide a quantitative framework for guiding future S engineering efforts to develop vaccines with higher resilience to the emergence of variants than current technologies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes , Vacinas contra COVID-19
5.
bioRxiv ; 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36203553

RESUMO

Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month timeframe. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both pre- and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sub-lineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly-reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants.

6.
Science ; 378(6620): 619-627, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36264829

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages carry distinct spike mutations resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters elicit plasma-neutralizing antibodies against Omicron BA.1, BA.2, BA.2.12.1, and BA.4/5, and that breakthrough infections, but not vaccination alone, induce neutralizing antibodies in the nasal mucosa. Consistent with immunological imprinting, most antibodies derived from memory B cells or plasma cells of Omicron breakthrough cases cross-react with the Wuhan-Hu-1, BA.1, BA.2, and BA.4/5 receptor-binding domains, whereas Omicron primary infections elicit B cells of narrow specificity up to 6 months after infection. Although most clinical antibodies have reduced neutralization of Omicron, we identified an ultrapotent pan-variant-neutralizing antibody that is a strong candidate for clinical development.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , COVID-19 , Evasão da Resposta Imune , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Testes de Neutralização , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Memória Imunológica , Células B de Memória/imunologia
7.
Toxicol Ind Health ; 38(10): 665-674, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36062628

RESUMO

Accumulating evidence has shown that bisphenol A (BPA) affects not only the growth and development of reproductive tissues but also disrupts meiosis. Meiotic disturbances lead to the formation of aneuploid gametes, resulting in the inability to conceive, pregnancy loss, and developmental disabilities in offspring. In recent years, increasing health concerns led manufacturers to seek BPA alternatives. In response, BPA analogs have been prepared and investigated in a variety of toxicity-related studies. Despite hopes that these analogs would prove less harmful than BPA, published data show that these alternatives continue to pose a significant risk to human health. In this study, we synthesized two less investigated BPA analogs with cyclic side chains, bisphenol Y (BPY) and bisphenol Z (BPZ), and evaluated their reprotoxic potential using Caenorhabditis elegans. C. elegans were cultured on nematode growth medium plates containing a 1 mM concentration of the dimethyl sulfoxide-dissolved bisphenols. The uptake of the chemicals was via two major routes: ingestion and cuticle diffusion. Following exposure, we evaluated fertilized egg count, germline apoptosis, and embryonic lethality-three parameters previously shown to reliably predict the reprotoxic potential of bisphenols in mammals. Our results indicated that both BPY and BPZ had a significant impact on fertility, resulting in increased germline apoptosis and a reduced number of progeny, without affecting the embryonic viability. After comparison with commercially relevant BPA and bisphenol S, our findings imply that BPA analogs with cyclic side chains, BPY and BPZ, adversely affect meiotic fidelity, resulting in diminished reproductive capacity.


Assuntos
Caenorhabditis elegans , Dimetil Sulfóxido , Animais , Compostos Benzidrílicos/toxicidade , Caenorhabditis elegans/fisiologia , Cicloexanos , Feminino , Humanos , Mamíferos , Fenóis , Gravidez
8.
Science ; 377(6608): 890-894, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35857529

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern comprises several sublineages, with BA.2 and BA.2.12.1 having replaced the previously dominant BA.1 and with BA.4 and BA.5 increasing in prevalence worldwide. We show that the large number of Omicron sublineage spike mutations leads to enhanced angiotensin-converting enzyme 2 (ACE2) binding, reduced fusogenicity, and severe dampening of plasma neutralizing activity elicited by infection or seven clinical vaccines relative to the ancestral virus. Administration of a homologous or heterologous booster based on the Wuhan-Hu-1 spike sequence markedly increased neutralizing antibody titers and breadth against BA.1, BA.2, BA.2.12.1, BA.4, and BA.5 across all vaccines evaluated. Our data suggest that although Omicron sublineages evade polyclonal neutralizing antibody responses elicited by primary vaccine series, vaccine boosters may provide sufficient protection against Omicron-induced severe disease.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Humanos , Imunização Secundária , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
9.
Science ; 377(6607): 735-742, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35857703

RESUMO

The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide-specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/química , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Anticorpos Amplamente Neutralizantes/imunologia , COVID-19/imunologia , Humanos , Peptídeos/imunologia , Ligação Proteica , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
10.
bioRxiv ; 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35677069

RESUMO

SARS-CoV-2 Omicron sublineages carry distinct spike mutations and represent an antigenic shift resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters result in potent plasma neutralizing activity against Omicron BA.1 and BA.2 and that breakthrough infections, but not vaccination-only, induce neutralizing activity in the nasal mucosa. Consistent with immunological imprinting, most antibodies derived from memory B cells or plasma cells of Omicron breakthrough cases cross-react with the Wuhan-Hu-1, BA.1 and BA.2 receptor-binding domains whereas Omicron primary infections elicit B cells of narrow specificity. While most clinical antibodies have reduced neutralization of Omicron, we identified an ultrapotent pan-variant antibody, that is unaffected by any Omicron lineage spike mutations and is a strong candidate for clinical development.

11.
Sci Transl Med ; 14(646): eabn1252, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35412328

RESUMO

New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to arise and prolong the coronavirus disease 2019 (COVID-19) pandemic. Here, we used a cell-free expression workflow to rapidly screen and optimize constructs containing multiple computationally designed miniprotein inhibitors of SARS-CoV-2. We found the broadest efficacy was achieved with a homotrimeric version of the 75-residue angiotensin-converting enzyme 2 (ACE2) mimic AHB2 (TRI2-2) designed to geometrically match the trimeric spike architecture. Consistent with the design model, in the cryo-electron microscopy structure TRI2-2 forms a tripod at the apex of the spike protein that engaged all three receptor binding domains simultaneously. TRI2-2 neutralized Omicron (B.1.1.529), Delta (B.1.617.2), and all other variants tested with greater potency than the monoclonal antibodies used clinically for the treatment of COVID-19. TRI2-2 also conferred prophylactic and therapeutic protection against SARS-CoV-2 challenge when administered intranasally in mice. Designed miniprotein receptor mimics geometrically arrayed to match pathogen receptor binding sites could be a widely applicable antiviral therapeutic strategy with advantages over antibodies in greater resistance to viral escape and antigenic drift, and advantages over native receptor traps in lower chances of autoimmune responses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Microscopia Crioeletrônica , Humanos , Camundongos , Glicoproteína da Espícula de Coronavírus
12.
Nat Biotechnol ; 40(9): 1336-1340, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35484405

RESUMO

We designed a protein biosensor that uses thermodynamic coupling for sensitive and rapid detection of neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in serum. The biosensor is a switchable, caged luciferase-receptor-binding domain (RBD) construct that detects serum-antibody interference with the binding of virus RBD to angiotensin-converting enzyme 2 (ACE-2) as a proxy for neutralization. Our coupling approach does not require target modification and can better distinguish sample-to-sample differences in analyte binding affinity and abundance than traditional competition-based assays.


Assuntos
Técnicas Biossensoriais , COVID-19 , Anticorpos Neutralizantes/química , Anticorpos Antivirais/genética , COVID-19/diagnóstico , Humanos , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química
13.
bioRxiv ; 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35313570

RESUMO

The SARS-CoV-2 Omicron variant of concern comprises three sublineages designated BA.1, BA.2, and BA.3, with BA.2 steadily replacing the globally dominant BA.1. We show that the large number of BA.1 and BA.2 spike mutations severely dampen plasma neutralizing activity elicited by infection or seven clinical vaccines, with cross-neutralization of BA.2 being consistently more potent than that of BA.1, independent of the vaccine platform and number of doses. Although mRNA vaccines induced the greatest magnitude of Omicron BA.1 and BA.2 plasma neutralizing activity, administration of a booster based on the Wuhan-Hu-1 spike sequence markedly increased neutralizing antibody titers and breadth against BA.1 and BA.2 across all vaccines evaluated. Our data suggest that although BA.1 and BA.2 evade polyclonal neutralizing antibody responses, current vaccine boosting regimens may provide sufficient protection against Omicron-induced disease.

14.
bioRxiv ; 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35118471

RESUMO

The SARS-CoV-2 receptor-binding domain (RBD) E406W mutation abrogates neutralization mediated by the REGEN-CoV therapeutic monoclonal antibody (mAb) COVID-19 cocktail and the cilgavimab (AZD1061) mAb. Here, we show that this residue substitution remodels the ACE2-binding site allosterically, thereby dampening receptor recognition severely and altering the epitopes recognized by these three mAbs. Although vaccine-elicited neutralizing antibody titers are decreased similarly against the E406 mutant and the Delta or Epsilon variants, broadly neutralizing sarbecovirus mAbs, including a clinical mAb, inhibit the E406W spike mutant.

15.
Cell ; 185(5): 872-880.e3, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35123650

RESUMO

Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses. Neutralization of SARS-CoV was moderate, however, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness.

16.
PLoS Pathog ; 18(2): e1010248, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35134084

RESUMO

Many SARS-CoV-2 variants have mutations at key sites targeted by antibodies. However, it is unknown if antibodies elicited by infection with these variants target the same or different regions of the viral spike as antibodies elicited by earlier viral isolates. Here we compare the specificities of polyclonal antibodies produced by humans infected with early 2020 isolates versus the B.1.351 variant of concern (also known as Beta or 20H/501Y.V2), which contains mutations in multiple key spike epitopes. The serum neutralizing activity of antibodies elicited by infection with both early 2020 viruses and B.1.351 is heavily focused on the spike receptor-binding domain (RBD). However, within the RBD, B.1.351-elicited antibodies are more focused on the "class 3" epitope spanning sites 443 to 452, and neutralization by these antibodies is notably less affected by mutations at residue 484. Our results show that SARS-CoV-2 variants can elicit polyclonal antibodies with different immunodominance hierarchies.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Humanos , Imunização Passiva/métodos , Testes de Neutralização , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
17.
Nature ; 603(7902): 706-714, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104837

RESUMO

The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.


Assuntos
COVID-19/patologia , COVID-19/virologia , Fusão de Membrana , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Internalização do Vírus , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Convalescença , Feminino , Humanos , Soros Imunes/imunologia , Intestinos/patologia , Intestinos/virologia , Pulmão/patologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Mutação , Mucosa Nasal/patologia , Mucosa Nasal/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Técnicas de Cultura de Tecidos , Virulência , Replicação Viral
18.
Science ; 375(6583): 864-868, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076256

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern evades antibody-mediated immunity that comes from vaccination or infection with earlier variants due to accumulation of numerous spike mutations. To understand the Omicron antigenic shift, we determined cryo-electron microscopy and x-ray crystal structures of the spike protein and the receptor-binding domain bound to the broadly neutralizing sarbecovirus monoclonal antibody (mAb) S309 (the parent mAb of sotrovimab) and to the human ACE2 receptor. We provide a blueprint for understanding the marked reduction of binding of other therapeutic mAbs that leads to dampened neutralizing activity. Remodeling of interactions between the Omicron receptor-binding domain and human ACE2 likely explains the enhanced affinity for the host receptor relative to the ancestral virus.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Anticorpos Antivirais/química , Evasão da Resposta Imune , Receptores de Coronavírus/química , SARS-CoV-2/química , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Deriva e Deslocamento Antigênicos , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos/genética , Domínios e Motivos de Interação entre Proteínas/genética , Receptores de Coronavírus/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
19.
Science ; 375(6579): 449-454, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34990214

RESUMO

Understanding broadly neutralizing sarbecovirus antibody responses is key to developing countermeasures against SARS-CoV-2 variants and future zoonotic sarbecoviruses. We describe the isolation and characterization of a human monoclonal antibody, designated S2K146, that broadly neutralizes viruses belonging to SARS-CoV- and SARS-CoV-2-related sarbecovirus clades which use ACE2 as an entry receptor. Structural and functional studies show that most of the virus residues that directly bind S2K146 are also involved in binding to ACE2. This allows the antibody to potently inhibit receptor attachment. S2K146 protects against SARS-CoV-2 Beta challenge in hamsters and viral passaging experiments reveal a high barrier for emergence of escape mutants, making it a good candidate for clinical development. The conserved ACE2-binding residues present a site of vulnerability that might be leveraged for developing vaccines eliciting broad sarbecovirus immunity.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , COVID-19/terapia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Afinidade de Anticorpos , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Amplamente Neutralizantes/uso terapêutico , COVID-19/imunologia , Reações Cruzadas , Microscopia Crioeletrônica , Epitopos , Humanos , Evasão da Resposta Imune , Mesocricetus , Modelos Moleculares , Mimetismo Molecular , Mutação , Conformação Proteica , Domínios Proteicos , Receptores de Coronavírus/química , Receptores de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
20.
Nature ; 602(7898): 664-670, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016195

RESUMO

The recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid substitutions in the spike protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody-based therapeutics. Here we show that the Omicron RBD binds to human ACE2 with enhanced affinity, relative to the Wuhan-Hu-1 RBD, and binds to mouse ACE2. Marked reductions in neutralizing activity were observed against Omicron compared to the ancestral pseudovirus in plasma from convalescent individuals and from individuals who had been vaccinated against SARS-CoV-2, but this loss was less pronounced after a third dose of vaccine. Most monoclonal antibodies that are directed against the receptor-binding motif lost in vitro neutralizing activity against Omicron, with only 3 out of 29 monoclonal antibodies retaining unaltered potency, including the ACE2-mimicking S2K146 antibody1. Furthermore, a fraction of broadly neutralizing sarbecovirus monoclonal antibodies neutralized Omicron through recognition of antigenic sites outside the receptor-binding motif, including sotrovimab2, S2X2593 and S2H974. The magnitude of Omicron-mediated immune evasion marks a major antigenic shift in SARS-CoV-2. Broadly neutralizing monoclonal antibodies that recognize RBD epitopes that are conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Deriva e Deslocamento Antigênicos/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Testes de Neutralização , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Deriva e Deslocamento Antigênicos/genética , Vacinas contra COVID-19/imunologia , Linhagem Celular , Convalescença , Epitopos de Linfócito B/imunologia , Humanos , Evasão da Resposta Imune , Camundongos , SARS-CoV-2/química , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Vesiculovirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...