Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(14): 141104, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064506

RESUMO

The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements. We use numerical calculations of regular, parametric, non-Kerr metrics to identify the common characteristic among these different parametrizations that control the predicted shadow size. We show that the shadow-size measurements place significant constraints on deviation parameters that control the second post-Newtonian and higher orders of each metric and are, therefore, inaccessible to weak-field tests. The new constraints are complementary to those imposed by observations of gravitational waves from stellar-mass sources.

2.
Science ; 351(6268): 30-1, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26721990
3.
Science ; 350(6265): 1242-5, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26785487

RESUMO

Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotron emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered magnetic fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intrahour variability associated with these fields.

4.
Science ; 345(6200): 1029-32, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25170147

RESUMO

Because of its proximity and its youth, the Pleiades open cluster of stars has been extensively studied and serves as a cornerstone for our understanding of the physical properties of young stars. This role is called into question by the "Pleiades distance controversy," wherein the cluster distance of 120.2 ± 1.5 parsecs (pc) as measured by the optical space astrometry mission Hipparcos is significantly different from the distance of 133.5 ± 1.2 pc derived with other techniques. We present an absolute trigonometric parallax distance measurement to the Pleiades cluster that uses very long baseline radio interferometry (VLBI). This distance of 136.2 ± 1.2 pc is the most accurate and precise yet presented for the cluster and is incompatible with the Hipparcos distance determination. Our results cement existing astrophysical models for Pleiades-age stars.

5.
Nature ; 493(7431): 187-90, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23235823

RESUMO

A subset of ultraluminous X-ray sources (those with luminosities of less than 10(40) erg s(-1); ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ∼5-20M cicled dot, probably by means of an accretion disk. The X-ray and radio emission are coupled in such Galactic sources; the radio emission originates in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium hinders the determination of the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source in the nearby galaxy M 31, whose peak luminosity exceeded 10(39) erg s(-1). The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a black hole of stellar mass. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission.

6.
Science ; 338(6105): 355-8, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23019611

RESUMO

Approximately 10% of active galactic nuclei exhibit relativistic jets, which are powered by the accretion of matter onto supermassive black holes. Although the measured width profiles of such jets on large scales agree with theories of magnetic collimation, the predicted structure on accretion disk scales at the jet launch point has not been detected. We report radio interferometry observations, at a wavelength of 1.3 millimeters, of the elliptical galaxy M87 that spatially resolve the base of the jet in this source. The derived size of 5.5 ± 0.4 Schwarzschild radii is significantly smaller than the innermost edge of a retrograde accretion disk, suggesting that the M87 jet is powered by an accretion disk in a prograde orbit around a spinning black hole.

7.
Science ; 333(6039): 203-6, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21680812

RESUMO

Gas accretion onto some massive black holes (MBHs) at the centers of galaxies actively powers luminous emission, but most MBHs are considered dormant. Occasionally, a star passing too near an MBH is torn apart by gravitational forces, leading to a bright tidal disruption flare (TDF). Although the high-energy transient Sw 1644+57 initially displayed none of the theoretically anticipated (nor previously observed) TDF characteristics, we show that observations suggest a sudden accretion event onto a central MBH of mass about 10(6) to 10(7) solar masses. There is evidence for a mildly relativistic outflow, jet collimation, and a spectrum characterized by synchrotron and inverse Compton processes; this leads to a natural analogy of Sw 1644+57 to a temporary smaller-scale blazar.

8.
Nature ; 455(7209): 78-80, 2008 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-18769434

RESUMO

The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation. Sagittarius A* (Sgr A*), the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4,000,000 times that of the Sun. A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A*, where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering. Here we report observations at a wavelength of 1.3 mm that set a size of 37(+16)(-10) microarcseconds on the intrinsic diameter of Sgr A*. This is less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of Sgr A* emission may not be centred on the black hole, but arises in the surrounding accretion flow.

9.
Science ; 318(5851): 759-60, 2007 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17975058
10.
Science ; 304(5671): 704-8, 2004 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-15060284

RESUMO

We have detected the intrinsic size of Sagittarius A*, the Galactic center radio source associated with a supermassive black hole, showing that the short-wavelength radio emission arises from very near the event horizon of the black hole. Radio observations with the Very Long Baseline Array show that the source has a size of 24 +/- 2 Schwarzschild radii at 7-millimeter wavelength. In one of eight 7-millimeter epochs, we also detected an increase in the intrinsic size of 60(-17)(+25)%. These observations place a lower limit to the mass density of Sagittarius A* of 1.4 x 10(4) solar masses per cubic astronomical unit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...