Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Process Impacts ; 25(3): 472-483, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36722905

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of highly fluorinated, anthropogenic compounds that are used in a wide variety of consumer applications. Due to their widespread use and high persistence, PFAS are ubiquitous in drinking water, which is of concern due to the threats these compounds pose to human health. Reduction via the hydrated electron is a promising technology for PFAS remediation and has been well-studied. However, since previous work rarely reports fluorine atom balances and often relies on suspect screening, some transformation products are likely unaccounted for. Therefore, we performed non-target analysis using high-resolution mass spectrometry on solutions of perfluorooctanesulfonate (PFOS), perfluorobutanesulfonate (PFBS), perfluorooctanoate (PFOA), and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate (GenX) that had been treated with UV/sulfite to produce hydrated electrons. We determined fluorine atom balances for all compounds studied, finding high fluorine atom balances for PFOS and PFBS. PFOA and GenX had lower overall fluorine atom balances, likely due to the production of volatile or very polar transformation products that were not measured by our methods. Transformation products identified by our analysis were consistent with literature, with a few exceptions. Namely, shorter-chain perfluorosulfonates (PFSA) and their H/F substituted counterparts were also detected from PFOS. This is an unexpected result based on literature, as no documented pathway exists for the formation of shorter-chain PFSA during UV/sulfite treatment. Furthermore, the nontarget approach we employed allowed for identification of novel, unsaturated products from the hydrated electron treatment of perfluorooctanesulfonate (PFOS) that warrant further investigation.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Humanos , Flúor , Fluorocarbonos/análise , Sulfitos
2.
Environ Sci Process Impacts ; 25(2): 277-287, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36189623

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a class of ultra-persistent anthropogenic contaminants. PFAS are ubiquitous in environmental and built systems, but very few online methods exist for their characterization in atmospheric gases and aerosols. Iodide time-of-flight chemical ionization mass spectrometry (iodide-ToF-CIMS) is a promising technology for online characterization of PFAS in the atmosphere. Previous work using iodide-ToF-CIMS was successful in measuring gas-phase perfluoroalkyl carboxylic acids and fluorotelomer alcohols, but those are just two of the myriad classes of PFAS that are atmospherically relevant. Therefore, our first objective was to test other sample introduction methods coupled to iodide-TOF-CIMS to evaluate its ability to measure a wider suite of PFAS in both gas and aerosol phases. Using a variety of sample introduction techniques, we successfully measured gas-phase fluorotelomer alcohols (FTOHs), gas and aerosol-phase perfluoroalkyl carboxylic acids (PFCAs), and aerosol-phase perfluoroalkyl sulfonic acids and polyfluoroalkyl phosphoric acid diesters (PFSAs and diPAPs). We also determined iodide-ToF-CIMS response factors for these compounds by introducing known quantities using a Filter Inlet for Gases and AEROsols (FIGAERO). These response factors ranged from 400 to 6 × 104 ions per nanogram, demonstrating low limits of detection. Furthermore, PFAS are a poorly understood diverse class of molecules that exhibit unusual and often unexpected physicochemical properties due to their highly fluorinated nature. Since detection of PFAS with iodide-ToF-CIMS relies on the analyte molecule to either undergo proton transfer or adduct formation with iodide, understanding PFAS behavior during chemical ionization gives rise to a more fundamental understanding of these compounds. Through voltage scanning experiments and DFT calculations, we found that PFCAs and FTOHs readily form iodide adducts, while PFSAs and diPAPs preferentially undergo proton transfer to iodide. Generally, binding energy increased with increasing linear chain length, and PFCAs had stronger binding than FTOHs. Overall, our results suggest that iodide-ToF-CIMS can be used to measure even nonvolatile PFAS such as PFSAs and diPAPs in the aerosol phase in a semi-continuous online fashion.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Iodetos/análise , Prótons , Fluorocarbonos/análise , Ácidos Carboxílicos/análise , Espectrometria de Massas , Poluentes Químicos da Água/análise
3.
Sci Adv ; 7(9)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33627419

RESUMO

Ice-nucleating particles (INPs) in biomass-burning aerosol (BBA) that affect cloud glaciation, microphysics, precipitation, and radiative forcing were recently found to be driven by the production of mineral phases. BBA experiences extensive chemical aging as the smoke plume dilutes, and we explored how this alters the ice activity of the smoke using simulated atmospheric aging of authentic BBA in a chamber reactor. Unexpectedly, atmospheric aging enhanced the ice activity for most types of fuels and aging schemes. The removal of organic carbon particle coatings that conceal the mineral-based ice-active sites by evaporation or oxidation then dissolution can increase the ice activity by greater than an order of magnitude. This represents a different framework for the evolution of INPs from biomass burning where BBA becomes more ice active as it dilutes and ages, making a larger contribution to the INP budget, resulting cloud microphysics, and climate forcing than is currently considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...