Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocr Connect ; 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961795

RESUMO

Hypoparathyroidism is genetically heterogeneous and characterized by low plasma calcium and parathyroid hormone (PTH) concentrations. X-linked hypoparathyroidism (XLHPT) in two American families, is associated with interstitial deletion-insertions involving deletions of chromosome Xq27.1 downstream of SOX3 and insertions of predominantly non-coding DNA from chromosome 2p25.3. These could result in loss, gain, or movement of regulatory elements, which include ultraconserved element uc482, that could alter SOX3 expression,. To investigate this, we analysed SOX3 expression in EBV-transformed lymphoblastoid cells from 3 affected males, 3 unaffected males, and 4 carrier females from one XLHPT family. SOX3 expression was similar in all individuals, indicating that the spatiotemporal effect of the interstitial deletion-insertion on SOX3 expression postulated to occur in developing parathyroids did not manifest in lymphoblastoids. Expression of SNTG2, which is duplicated and inserted into the X chromosome, and ATP11C, which is moved telomerically, were also similarly expressed in all individuals. Investigation of male hemizygous (Sox3-/Y and uc482-/Y) and female heterozygous (Sox3+/- and uc482+/-) knock-out mice, together with wild-type littermates (male Sox3+/Y and uc482+/Y, and female Sox3+/+ and uc482+/+), revealed Sox3-/Y, Sox3+/-, uc482-/Y, and uc482+/- mice to have normal plasma biochemistry, compared to their respective wild-type littermates. When challenged with a low calcium diet, all mice had hypocalcaemia, and elevated plasma PTH concentrations and alkaline phosphatase activities, and Sox3-/Y, Sox3+/-, uc482-/Y, and uc482+/- mice had similar plasma biochemistry, compared to wild-type littermates. Thus, these results indicate that absence of Sox3 or uc482 does not cause hypoparathyroidism, and that XLHPT likely reflects a more complex mechanism.

2.
J Endocrinol ; 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30389902

RESUMO

Multiple Endocrine Neoplasia type 1 (MEN1) is an autosomal dominant disorder characterised by the combined occurrence of parathyroid, pituitary and pancreatic islet tumours, and is due to mutations of the MEN1 gene, which encodes the tumour suppressor protein menin. Menin has multiple roles in genome stability, transcription, cell division and proliferation, but its mechanistic roles in tumourigenesis remain to be fully elucidated. MicroRNAs (miRNA) are non-coding single stranded RNAs that post-transcriptionally regulate gene expression and have been associated with tumour development, although the contribution of miRNAs to MEN1-associated tumourigenesis and their relationship with menin expression are not fully understood. Alterations in miRNA expression, including downregulation of three putative 'tumour suppressor' miRNAs, miR-15a, miR-16-1 and let-7a, have been reported in several tumour types including non-MEN1 pituitary adenomas. We have therefore investigated the expression of miR-15a, miR-16-1 and let-7a in pituitary tumours that developed after 12 months of age in female mice with heterozygous knock out of the Men1 gene (Men1+/- mice). The miRNAs miR-15a, miR-16-1 and let-7a were significantly downregulated in pituitary tumours (by 2.3-fold, p<0.05; 2.1-fold p<0.01 and 1.6-fold p<0.05, respectively) of Men1+/- mice, compared to normal wild type pituitaries. MiR-15a and miR-16-1 expression inversely correlated with expression of cyclin D1, a known pro-tumourigenic target of these miRNAs, and knock down of menin in a human cancer cell line (HeLa), and AtT20 mouse pituitary cell line resulted in significantly decreased expression of miR-15a (p<0.05), indicating that the decrease in miR-15a may be a direct result of lost menin expression.

3.
Nat Genet ; 47(9): 969-978, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26214591

RESUMO

The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.


Assuntos
Estudos de Associação Genética , Animais , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Anotação de Sequência Molecular , Mutação , Fenótipo
4.
PLoS One ; 9(1): e87331, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24475274

RESUMO

Sound transduction depends upon mechanosensitive channels localized on the hair-like bundles that project from the apical surface of cochlear hair cells. Hair bundles show a stair-case structure composed of rows of stereocilia, and each stereocilium contains a core of tightly-packed and uniformly-polarized actin filaments. The growth and maintenance of the stereociliary actin core are dynamically regulated. Recently, it was shown that the actin-binding protein gelsolin is expressed in the stereocilia of outer hair cells (OHCs) and in its absence they become long and straggly. Gelsolin is part of a whirlin scaffolding protein complex at the stereocilia tip, which has been shown to interact with other actin regulatory molecules such as Eps8. Here we investigated the physiological effects associated with the absence of gelsolin and its possible overlapping role with Eps8. We found that, in contrast to Eps8, gelsolin does not affect mechanoelectrical transduction during immature stages of development. Moreover, OHCs from gelsolin knockout mice were able to mature into fully functional sensory receptors as judged by the normal resting membrane potential and basolateral membrane currents. Mechanoelectrical transducer current in gelsolin-Eps8 double knockout mice showed a profile similar to that observed in the single mutants for Eps8. We propose that gelsolin has a non-overlapping role with Eps8. While Eps8 is mainly involved in the initial growth of stereocilia in both inner hair cells (IHCs) and OHCs, gelsolin is required for the maintenance of mature hair bundles of low-frequency OHCs after the onset of hearing.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Gelsolina/metabolismo , Células Ciliadas Auditivas Externas/fisiologia , Mecanorreceptores/fisiologia , Mecanotransdução Celular/fisiologia , Proteínas dos Microfilamentos/metabolismo , Animais , Gelsolina/genética , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/ultraestrutura , Imuno-Histoquímica , Mecanorreceptores/metabolismo , Mecanorreceptores/ultraestrutura , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Varredura , Técnicas de Patch-Clamp , Estimulação Física , Compostos de Piridínio , Compostos de Amônio Quaternário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...