Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(25): 6544-6549, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38885194

RESUMO

Absorption spectroscopy probing transitions from shallow-core d and f orbitals in lanthanides and actinides reveals information about bonding and the electronic structure in compounds containing these elements. However, spectroscopy in this photon energy range is challenging because of the limited availability of light sources and extremely short penetration depths. In this work, we address these challenges using a tabletop extreme ultraviolet (XUV), ultrafast, laser-driven, high harmonic generation light source, which generates femtosecond pulses in the 40-140 eV range. We present reflection spectroscopy measurements at the N4,5 (i.e., predominantly 4d to 5f transitions) and O4,5 (i.e., 5d to 5f transitions) absorption edges on several lanthanide and uranium oxide crystals. We compare these results to density functional theory calculations to assign the electronic transitions and predict the spectra for other lanthanides. This work paves the way for laboratory-scale XUV absorption experiments for studying crystalline and molecular f-electron systems, with applications ranging from surface chemistry, photochemistry, and electronic or chemical structure determination to nuclear forensics.

2.
Opt Express ; 31(19): 31410-31418, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710661

RESUMO

New, hard x-ray free electron lasers (FEL) produce intense femtosecond-to-attosecond pulses at angstrom wavelengths, giving access to the fundamental spatial and temporal scales of matter. These revolutionary light sources open the door to applying the suite of nonlinear, optical spectroscopy methods at hard x-ray photon energies. Nonlinear spectroscopy with hard x-rays can allow for measuring the coherence properties of short wavelength excitations with atomic specificity and for understanding how high energy excitations couple to other degrees of freedom in atomic, molecular or condensed-phase systems. As a step in this direction, here we present hard x-ray, optical four-wave mixing (4WM) measurements done at 9.8 keV at the split-and-delay line at the x-ray correlation spectroscopy (XCS) hutch of the Linac Coherent Light Source (LCLS). In this work, we create an x-ray transient grating (TG) from a pair of crossing x-ray beams and diffract optical laser pulses at 400 nm from the TG. The key technical advance here is being able to independently vary the delays of the x-ray pulses. Measurements were made in 3 different solid samples: bismuth germinate (BGO), zinc oxide (ZnO) and yttrium aluminum garnet (YAG). The resulting phase-matched, 4WM signal is measured in two different ways: by varying the x-ray, x-ray pulse delay which can reveal both material and light source coherence properties and also by varying the optical laser delay with respect to the x-ray TG to study how the x-ray excitation couples to the optical properties. Although no coherent 4WM signal was seen in these measurements, the absence of this signal gives important information on experimental requirements for detecting this in future work. Also, our laser-delay scans, although not a new measurement, were applied to different materials than in past work and reveal new examples x-ray induced lattice dynamics in solids. This work represents a key step towards extending nonlinear optics and time-resolved spectroscopy into the hard x-ray regime.

3.
J Phys Chem A ; 126(27): 4497-4506, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35786904

RESUMO

We present an approach for measuring thermal decomposition kinetics in crystalline solids using X-ray diffraction to track the loss of crystallinity that accompanies condensed phase decomposition chemistry. We apply this method to systems for which extracting thermodynamic parameters has been historically difficult: organic molecular crystals that thermally decompose below their melting points, such as solid explosives. To demonstrate this method, we measured the rate of solid, thermal decomposition versus temperature in three different secondary solid explosives and the sugar fructose. In all cases, we observed an acceleration in the thermal decomposition rate with increasing temperature, which forms a vertical asymptote, a phenomenon known as melt acceleration. We show that observing the vertical asymptote in the thermal decomposition rate allows for identifying the thermodynamic melting point, which is not trivial to determine when melting and thermal decomposition happen simultaneously. We expect this method to be useful for studying thermal decomposition and for extracting thermodynamic data for secondary solid explosives, data that are needed for modeling and understanding faster phenomena, such as detonation. We also expect this method to be relevant to other organic molecular crystals in which thermal decomposition and melting overlap, such as sugars or pharmaceuticals.

4.
Opt Express ; 29(8): 11394-11405, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984919

RESUMO

Frequency-resolved optical gating (FROG) is a common technique for measuring ultrashort laser pulses using an instantaneous, nonlinear-optical interaction as a fast time-gate to measure the pulse intensity and phase. But at high frequencies, materials are often absorbing and it is not always possible to find a medium with a fast nonlinear-optical response. Here we show that an ultrashort, ultraviolet (UV) pulse can be measured in a strongly absorbing medium, using the absorption as the nonlinear-optical time-gate. To do this, we build on our recent implementation of FROG, known as induced-grating cross-correlation FROG (IG XFROG), where an unknown, higher-frequency pulse creates a transient grating that is probed with a lower-frequency, more easily detectable reference pulse. We demonstrate this with an 800 nm reference pulse to characterize 400 nm or 267 nm pulses using ZnS as the nonlinear-optical medium, which is absorptive at and below 400 nm. By scanning the delay between the two UV pulses which create the transient grating, we show that the phase-sensitive instantaneous four-wave-mixing contribution to the nonlinear signal field can be detected and separated from the slower, incoherent part of the response. Measuring a spectrally-resolved cross-correlation in this way and then applying a simple model for the response of the medium, we show that a modified generalized projections (GP) phase-retrieval algorithm can be used to extract the pulse amplitude and phase. We test this approach by measuring chirped UV pulses centered at 400 nm and 267 nm. Since interband absorption (or even photoionization) is not strongly wavelength-dependent, we expect IG XFROG to be applicable deeper into the UV.

5.
Opt Express ; 28(18): 26850-26860, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906951

RESUMO

We introduce a variation on the cross-correlation frequency-resolved optical gating (XFROG) technique that uses a near-infrared (NIR) nonlinear-optical signal to characterize pulses in the ultraviolet (UV). Using a transient-grating XFROG beam geometry, we create a grating using two copies of the unknown UV pulse and diffract a NIR reference pulse from it. We show that, by varying the delay between the UV pulses creating the grating, the UV pulse intensity-and-phase information can be encoded into a NIR signal. We also implemented a modified generalized-projections phase-retrieval algorithm for retrieving the UV pulses from these spectrograms. We performed proof-of-principle measurements of chirped pulses and double pulses, all at 400 nm. This approach should be extendable deeper into the UV and potentially even into the extreme UV or x-ray range.

6.
Nanoscale ; 12(35): 18193-18199, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32856672

RESUMO

Inducing new phases in thick films via vertical lattice strain is one of the critical advantages of vertically aligned nanocomposites (VANs). In SrTiO3 (STO), the ground state is ferroelastic, and the ferroelectricity in STO is suppressed by the orthorhombic transition. Here, we explore whether vertical lattice strain in three-dimensional VANs can be used to induce new ferroelectric phases in SrTiO3:MgO (STO:MgO) VAN thin films. The STO:MgO system incorporates ordered, vertically aligned MgO nanopillars into a STO film matrix. Strong lattice coupling between STO and MgO imposes a large lattice strain in the STO film. We have investigated ferroelectricity in the STO phase, existing up to room temperature, using piezoresponse force microscopy, phase field simulation and second harmonic generation. We also serendipitously discovered the formation of metastable TiO nanocores in MgO nanopillars embedded in the STO film matrix. Our results emphasize the design of new phases via vertical epitaxial strain in VAN thin films.

7.
J Chem Phys ; 150(20): 204503, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31153201

RESUMO

We probe shock-induced chemistry in two organic liquids by measuring broadband, midinfrared absorption in the 800-1400 cm-1 frequency range. To test this new method and understand the signatures of chemical reactions in time resolved vibrational spectra, we compared liquid benzene shocked to unreactive conditions (shocked to a pressure of 18 GPa for a duration of 300 ps) to nitromethane under reactive conditions (25 GPa). We see clear signatures of shock-induced chemistry that are distinguishable from the pressure- and temperature-induced changes in vibrational mode shapes. While shocked benzene shows primarily a broadening and shifting of the vibrational modes, the nitromethane vibrational modes vanish once the shock wave enters the liquid and simultaneously, a spectrally broad feature appears that we interpret as the infrared spectrum of the complex mixture of product and intermediate species. To further interpret these measurements, we compare them to reactive quantum molecular dynamics simulations, which gives qualitatively consistent results. This work demonstrates a promising method for time resolving shock-induced chemistry, illustrating that chemical reactions produce distinct changes in the vibrational spectra.

8.
Opt Express ; 19(2): 1367-77, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21263678

RESUMO

For essentially all applications, laser pulses must avoid variations in their intensity and phase within a pulse and from pulse to pulse. Currently available devices work very well for both long (>10ns) and short (<100ps) pulses. But intermediate (~ns) pulses remain difficult to measure and, not surprisingly, are the least stable. Here we describe a simple, elegant, complete, all-optical, single-shot device that measures ~ns pulses and that does not require a reference pulse or assumptions about the pulse shape. It simultaneously achieves a very high spectral resolution of <1pm and a very large delay range of ~10ns (several meters of light travel). It accomplishes both goals using high-efficiency, high-finesse etalons: one to generate high angular dispersion for a high-resolution spectrometer, and another to tilt the pulse front by ~89.9° without distorting it in time. Using this device, we completely measure microchip and fiber-amplifier pulses.


Assuntos
Lasers , Nanotecnologia/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
9.
Opt Express ; 18(24): 24451-60, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21164792

RESUMO

We measure the complete electric field of extremely complex ultrafast waveforms using the simple linear-optical, interferometric pulse-measurement technique, MUD TADPOLE. The waveforms were measured with ~40 fs temporal resolution over a temporal range of ~3.5 ns and had time-bandwidth products exceeding 65,000. The approach is general and could allow the measurement of arbitrary optical waveforms.

10.
Opt Express ; 18(11): 11083-8, 2010 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-20588965

RESUMO

Using a recently developed technique (SEA TADPOLE) for easily measuring the complete spatiotemporal electric field of light pulses with micrometer spatial and femtosecond temporal resolution, we directly demonstrate the formation of theo-called boundary diffraction wave and Arago's spot after an aperture, as well as the superluminal propagation of the spot. Our spatiotemporally resolved measurements beautifully confirm the time-domain treatment of diffraction. Also they prove very useful for modern physical optics, especially in micro- and meso-optics, and also significantly aid in the understanding of diffraction phenomena in general.


Assuntos
Campos Eletromagnéticos , Modelos Teóricos , Refratometria/métodos , Espalhamento de Radiação , Simulação por Computador , Fatores de Tempo
11.
Opt Express ; 18(7): 6583-97, 2010 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-20389682

RESUMO

We introduce a spectral-interferometry (SI) technique for measuring the complete intensity and phase of relatively long and very complex ultrashort pulses. Ordinarily, such a method would require a high-resolution spectrometer, but our method overcomes this need. It involves making multiple measurements using SI (in its SEA TADPOLE variation) at numerous delays, measuring many temporal pulselets within the pulse, and concatenating the resulting pulselets. Its spectral resolution is the inverse delay range--many times higher than that of the spectrometer used. Our simple proof-of-principle implementation of it provided 71 fs temporal resolution and a temporal range of 100 ps using a few-cm low-resolution spectrometer.


Assuntos
Interferometria/métodos , Óptica e Fotônica , Algoritmos , Simulação por Computador , Análise de Fourier , Modelos Estatísticos , Software , Espectrofotometria/métodos , Fatores de Tempo
12.
Opt Express ; 17(19): 17070-81, 2009 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-19770925

RESUMO

The evolution of the frequency chirp of a laser pulse inside a classical pulse compressor is very different for plane waves and Gaussian beams, although after propagating through the last (4th) dispersive element, the two models give the same results. In this paper, we have analyzed the evolution of the frequency chirp of Gaussian pulses and beams using a method which directly obtains the spectral phase acquired by the compressor. We found the spatiotemporal couplings in the phase to be the fundamental reason for the difference in the frequency chirp acquired by a Gaussian beam and a plane wave. When the Gaussian beam propagates, an additional frequency chirp will be introduced if any spatiotemporal couplings (i.e. angular dispersion, spatial chirp or pulse front tilt) are present. However, if there are no couplings present, the chirp of the Gaussian beam is the same as that of a plane wave. When the Gaussian beam is well collimated, the introduced frequency chirp predicted by the plane wave and Gaussian beam models are in closer agreement. This work improves our understanding of pulse compressors and should be helpful for optimizing dispersion compensation schemes in many applications of femtosecond laser pulses.

13.
Opt Express ; 17(17): 14948-55, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19687973

RESUMO

We measure the spatiotemporal field of ultrashort pulses with complex spatiotemporal profiles using the linear-optical, interferometric pulse-measurement technique SEA TADPOLE. Accelerating and decelerating ultrashort, localized, nonspreading Bessel-X wavepackets were generated from a approximately 27 fs duration Ti:Sapphire oscillator pulse using a combination of an axicon and a convex or concave lens. The wavefields are measured with approximately 5 microm spatial and approximately 15 fs temporal resolutions. Our experimental results are in good agreement with theoretical calculations and numerical simulations.

14.
Opt Lett ; 34(15): 2276-8, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19649069

RESUMO

We present direct measurements of the spatiotemporal electric field of an ultrashort Bessel-X pulse generated using a conical lens (axicon). These measurements were made using the linear-optical interferometric technique SEA TADPOLE, which has micrometer spatial resolution and femtosecond temporal resolution. From our measurements, both the superluminal velocity of the Bessel pulse and the propagation invariance of the central spot are apparent. We verified our measurements with simulations.

15.
Opt Lett ; 34(7): 962-4, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19340185

RESUMO

The chirp acquired by a Gaussian ultrashort pulse due to angular dispersion, unlike that of plane waves, increases nonlinearly with propagation distance and eventually asymptotes to a constant. However, this interesting result has never been directly measured. In this Letter, we use two-dimensional spectral interferometry to measure the propagation dependence of the chirp for Gaussian ultrashort pulses and beams with angular dispersion. The measured chirp as a function of propagation distance agreed well with theory. This work verifies both an equation and a measurement technique that will be useful for predicting or determining the pulse's chirp in ultrafast optics experiments that contain angular dispersion.


Assuntos
Interferometria/instrumentação , Interferometria/métodos , Óptica e Fotônica , Simulação por Computador , Processamento Eletrônico de Dados , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Modelos Estatísticos , Modelos Teóricos , Distribuição Normal , Oscilometria/instrumentação , Oscilometria/métodos , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
16.
Opt Express ; 16(18): 13663-75, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18772978

RESUMO

We demonstrate a powerful and practical spectral interferometer with near-field scanning microscopy (NSOM) probes for measuring the spatiotemporal electric field of tightly focused ultrashort pulses with high spatial and spectral resolution. Our measurements involved numerical apertures as high as 0.44 and yielded the spatiotemporal field at and around the foci produced by two microscope objectives and several different lenses. For the first time, we measure the spatiotemporal field of the Bessel-like X-shaped pulse caused by spherical aberrations and a "fore-runner pulse" due to chromatic aberrations. We observed spatial features smaller than 1 microm and verified these results with non-paraxial simulations.


Assuntos
Desenho Assistido por Computador , Interferometria/instrumentação , Microscopia de Varredura por Sonda/instrumentação , Modelos Teóricos , Radiometria/instrumentação , Transdutores , Simulação por Computador , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento , Microscopia de Varredura por Sonda/métodos , Doses de Radiação
17.
Opt Express ; 15(16): 10219-30, 2007 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19547371

RESUMO

We present the first technique for directly measuring (without assumptions) the spatio-temporal intensity and phase of a train of ultrashort pulses at and near a focus. Our method uses an experimentally simple and high-spectral resolution variant of spectral interferometry (SEA TADPOLE). To illustrate our technique, we measured the spatio-temporal electric field in and around the foci of several different types of lenses. To confirm our results, we also simulated these measurements by numerically propagating a pulse through each of the lenses used. From one set of measurements, we made a movie showing a focusing pulse with severe chromatic aberration.

18.
Opt Express ; 14(24): 11892-900, 2006 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19529612

RESUMO

We present a high-spectral-resolution and experimentally simple version of spectral interferometry using optical fibers and crossed beams, which we call SEA TADPOLE. Rather than using collinear unknown and reference pulses separated in time to yield spectral fringes-and reduced spectral resolution-as in current versions, we use time-coincident pulses crossed at a small angle to generate spatial fringes. This allows the extraction of the spectral phase with the full spectrometer resolution, which allows the measurement of much longer and more complex pulses. In fact, SEA TADPOLE achieves spectral super-resolution, yielding the pulse spectrum with even better resolution. Avoiding collinear beams and using fiber coupling also vastly simplify alignment. We demonstrate SEA TADPOLE by measuring a chirped pulse, a double pulse separated by 14 ps, and a complex pulse comprising two trains of pulses with a time-bandwidth product of ~400.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...