Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 209: 105474, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511318

RESUMO

Human cytomegalovirus (CMV) is a ubiquitous ß-herpesvirus that establishes latent asymptomatic infections in healthy individuals but can cause serious infections in immunocompromised people, resulting in increased risk of morbidity and mortality. The current FDA-approved CMV drugs target late stages of the CMV life-cycle. While these drugs are effective in most cases, they have serious drawbacks, including poor oral bioavailability, dose-limiting toxicity, and a low barrier to resistance. Given the clinical relevance of CMV-associated diseases, novel therapies are needed. Thus, a novel class of compounds that inhibits the early stages of the CMV life-cycle was identified and found to block infection of different strains in physiologically relevant cell types. This class of compounds, N-arylpyrimidinamine (NAPA), demonstrated potent anti-CMV activity against ganciclovir-sensitive and -resistant strains in in vitro replication assays, a selectivity index >30, and favorable in vitro ADME properties. Mechanism of action studies demonstrated that NAPA compounds inhibit an early step of virus infection. NAPA compounds are specific inhibitors of cytomegaloviruses and exhibited limited anti-viral activity against other herpesviruses. Collectively, we have identified a novel class of CMV inhibitor that effectively limits viral infection and proliferation.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/etiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Ganciclovir/farmacologia , Hospedeiro Imunocomprometido
2.
Antiviral Res ; 208: 105431, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36209985

RESUMO

Clusters of acute non HepA-E hepatitis cases in previously healthy children have been reported globally. At least, 1010 cases were identified in 35 countries, 5% of those cases required liver transplantation and 2% died. The exact cause is not yet known, but there is circumstantial evidence suggesting that human adenovirus F41 (HAdV-F41) might be playing a role. No antiviral drug has been approved for treating human adenovirus infections. Furthermore, HAdV-F41 is notoriously difficult to grow in cell culture, which hindered studying the efficacy of an antiviral compound against this virus. Here, we show that filociclovir (FCV), a nucleoside analog, is a potent inhibitor of HAdV-F41 in cell culture using 2 approaches, namely immunostaining of infected cells and virus yield reduction assay. The activity of FCV was compared to 3 other known antivirals: cidofovir (CDV), ganciclovir (GCV) and valganciclovir (VGCV). Among the 4 compounds examined in this study, FCV was the most potent, with an EC50 of 3.5 µM. These compounds can be ranked by potency as follows: FCV > CDV > GCV ≥ VGCV. In addition, FCV was 10-fold more potent than CDV in a virus yield reduction assay. This report provides timely and valuable methodologies to the research community for testing antivirals against HAdV-F41. Our findings also support the continued development of FCV for various therapeutic applications, including pediatric hepatitis, if a causal relationship is firmly established in the future.


Assuntos
Adenovírus Humanos , Humanos , Criança , Antivirais/farmacologia , Antivirais/uso terapêutico , Valganciclovir , Ganciclovir/uso terapêutico , Cidofovir/farmacologia
3.
Mol Pharmacol ; 102(3): 172-182, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798366

RESUMO

Human and animal malaria parasites increase their host erythrocyte permeability to a broad range of solutes as mediated by parasite-associated ion channels. Molecular and pharmacological studies have implicated an essential role in parasite nutrient acquisition, but inhibitors suitable for development of antimalarial drugs are missing. Here, we generated a potent and specific drug lead using Plasmodium falciparum, a virulent human pathogen, and derivatives of MBX-2366, a nanomolar affinity pyridazinone inhibitor from a high-throughput screen. As this screening hit lacks the bioavailability and stability needed for in vivo efficacy, we synthesized 315 derivatives to optimize drug-like properties, establish target specificity, and retain potent activity against the parasite-induced permeability. Using a robust, iterative pipeline, we generated MBX-4055, a derivative active against divergent human parasite strains. MBX-4055 has improved oral absorption with acceptable in vivo tolerability and pharmacokinetics. It also has no activity against a battery of 35 human channels and receptors and is refractory to acquired resistance during extended in vitro selection. Single-molecule and single-cell patch-clamp indicate direct action on the plasmodial surface anion channel, a channel linked to parasite-encoded RhopH proteins. These studies identify pyridazinones as novel and tractable antimalarial scaffolds with a defined mechanism of action. SIGNIFICANCE STATEMENT: Because antimalarial drugs are prone to evolving resistance in the virulent human P. falciparum pathogen, new therapies are needed. This study has now developed a novel drug-like series of pyridazinones that target an unexploited parasite anion channel on the host cell surface, display excellent in vitro and in vivo ADME properties, are refractory to acquired resistance, and demonstrate a well defined mechanism of action.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Animais , Ânions/química , Ânions/metabolismo , Antimaláricos/farmacologia , Eritrócitos/metabolismo , Humanos , Nutrientes , Plasmodium falciparum/metabolismo
4.
Pharmaceuticals (Basel) ; 14(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810229

RESUMO

Presently, there is no FDA- or EMA-approved antiviral for the treatment of human adenovirus (HAdV) ocular infections. This study determined the antiviral activity of filociclovir (FCV) against ocular HAdV isolates in vitro and in the Ad5/NZW rabbit ocular model. The 50% effective concentrations (EC50) of FCV and cidofovir (CDV) were determined for several ocular HAdV types using standard plaque reduction assays. Rabbits were topically inoculated in both eyes with HAdV5. On day 1, the rabbits were divided into four topical treatment groups: (1) 0.5% FCV 4x/day × 10 d; (2) 0.1% FCV 4x/day × 10 d; (3) 0.5% CDV 2x/day × 7 d; (4) vehicle 4x/day × 10 d. Eyes were cultured for virus on days 0, 1, 3, 4, 5, 7, 9, 11, and 14. The resulting viral eye titers were determined using standard plaque assays. The mean in vitro EC50 for FCV against tested HAdV types ranged from 0.50 to 4.68 µM, whereas those treated with CDV ranged from 0.49 to 30.3 µM. In vivo, compared to vehicle, 0.5% FCV, 0.1% FCV, and 0.5% CDV produced lower eye titers, fewer numbers of positive eye cultures, and shorter durations of eye infection. FCV demonstrated anti-adenovirus activity in vitro and in vivo.

5.
Drug Discov Today ; 26(9): 2173-2181, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33845218

RESUMO

The increasing prevalence of multidrug-resistant (MDR) bacterial infections has created a crucial need for new therapeutics that avoid or minimize existing resistance mechanisms. In this review, we describe the development of novel classes of small-molecule adjunctive agents targeting either a bacterial virulence factor, the Pseudomonas aeruginosa type III secretion system (T3SS), or an intrinsic resistance factor, resistance-nodulation-cell division superfamily (RND) efflux pumps of the Enterobacteriaceae. These agents are designed to be administered with antibacterials to improve their efficacy. T3SS inhibition rescues host innate immune system cells from injection with bacterial toxins, whereas RND efflux pump inhibition increases antibiotic susceptibility, in both cases improving the efficacy of the combined antibacterial.


Assuntos
Antibacterianos/uso terapêutico , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Proteínas de Membrana Transportadoras/metabolismo , Sistemas de Secreção Tipo III/antagonistas & inibidores , Animais , Proteínas de Bactérias/metabolismo , Humanos , Sistemas de Secreção Tipo III/metabolismo
6.
Nat Commun ; 12(1): 1799, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741965

RESUMO

Bacterial ribosome rescue pathways that remove ribosomes stalled on mRNAs during translation have been proposed as novel antibiotic targets because they are essential in bacteria and are not conserved in humans. We previously reported the discovery of a family of acylaminooxadiazoles that selectively inhibit trans-translation, the main ribosome rescue pathway in bacteria. Here, we report optimization of the pharmacokinetic and antibiotic properties of the acylaminooxadiazoles, producing MBX-4132, which clears multiple-drug resistant Neisseria gonorrhoeae infection in mice after a single oral dose. Single particle cryogenic-EM studies of non-stop ribosomes show that acylaminooxadiazoles bind to a unique site near the peptidyl-transfer center and significantly alter the conformation of ribosomal protein bL27, suggesting a novel mechanism for specific inhibition of trans-translation by these molecules. These results show that trans-translation is a viable therapeutic target and reveal a new conformation within the bacterial ribosome that may be critical for ribosome rescue pathways.


Assuntos
Neisseria gonorrhoeae/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Ribossomos/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Células CACO-2 , Feminino , Gonorreia/microbiologia , Gonorreia/prevenção & controle , Humanos , Camundongos , Neisseria gonorrhoeae/genética , Biossíntese de Proteínas/genética , Inibidores da Síntese de Proteínas/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
7.
Antiviral Res ; 187: 105018, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476709

RESUMO

MBX-2168 has a mechanism of action similar to that of acyclovir (ACV) and ganciclovir (GCV), but two unique steps differentiate this drug from ACV/GCV. First, MBX-2168 is, at least partially, phosphorylated by the endogenous cellular kinase TAOK3 to a monophosphate. The second involves the removal of a moiety at the 6-position of MBX-2168-MP by adenosine deaminase like protein-1 (ADAL-1). It has been previously demonstrated that co-incubation with pentostatin (dCF), an ADAL-1 inhibitor, antagonizes the anti-viral activity of MBX-2168. We therefore hypothesize that inhibiting ADAL-1 results in a reduction of active compound produced in virus-infected cells. To test this, we examined the effect dCF has on the conversion of MBX-2168 to a triphosphate in HSV-1 and HCMV-infected cells. Our results demonstrate incubation of MBX-2168 alone or with dCF in HCMV-infected cells resulted in 53.1 ± 0.7 and 39.4 ± 1.5 pmol triphosphate/106 cells at 120 h, respectively. Incubation of MBX-2168 alone or with dCF in Vero cells resulted in 12.8 ± 0.1 and 6.7 ± 0.7 pmol triphosphate/106 cells at 24 h, respectively. HSV-1-infected Vero cells demonstrated no statistical difference in triphosphate accumulation at 24 h (13.1 ± 0.3 pmol triphosphate/106 cells). As expected, incubation with dCF resulted in the accumulation of MBX-2168-MP in both HFF (9.8 ± 0.9 pmol MBX-2168-MP/106 cells at 120 h) and Vero cells (4.7 ± 0.3 pmol MBX-2168-MP/106 cells at 24 h) while no detectable levels of monophosphate were observed in cultures not incubated with dCF. We conclude that dCF antagonizes the anti-viral effect of MBX-2168 by inhibiting the production of triphosphate, the active compound.


Assuntos
Antivirais/antagonistas & inibidores , Antivirais/farmacologia , Ciclopropanos/antagonistas & inibidores , Citomegalovirus/efeitos dos fármacos , Guanina/análogos & derivados , Herpesvirus Humano 1/efeitos dos fármacos , Pentostatina/farmacologia , Polifosfatos/metabolismo , Aciclovir/farmacologia , Animais , Linhagem Celular , Chlorocebus aethiops , Ciclopropanos/farmacologia , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/virologia , Fibroblastos/virologia , Prepúcio do Pênis/citologia , Ganciclovir/farmacologia , Guanina/antagonistas & inibidores , Guanina/farmacologia , Herpes Simples/tratamento farmacológico , Herpes Simples/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Mutação com Perda de Função , Masculino , Fosforilação , Células Vero , Replicação Viral/efeitos dos fármacos
8.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816736

RESUMO

Human adenovirus (HAdV) infection is common in the general population and can cause a range of clinical manifestations, among which pneumonia and keratoconjunctivitis are the most common. Although HAdV infections are mostly self-limiting, infections in immunocompromised individuals can be severe. No antiviral drug has been approved for treating adenoviruses. Filociclovir (FCV) is a nucleoside analogue which has successfully completed phase I human clinical safety studies and is now being developed for treatment of human cytomegalovirus (HCMV)-related disease in immunocompromised patients. In this report, we show that FCV is a potent broad-spectrum inhibitor of HAdV types 4 to 8, with 50% effective concentrations (EC50s) ranging between 1.24 and 3.6 µM and a 50% cytotoxic concentration (CC50) of 100 to 150 µM in human foreskin fibroblasts (HFFs). We also show that the prophylactic oral administration of FCV (10 mg/kg of body weight) 1 day prior to virus challenge and then daily for 14 days to immunosuppressed Syrian hamsters infected intravenously with HAdV6 was sufficient to prevent morbidity and mortality. FCV also mitigated tissue damage and inhibited virus replication in the liver. The 10-mg/kg dose had similar effects even when the treatment was started on day 4 after virus challenge. Furthermore, FCV administered at the same dose after intranasal challenge with HAdV6 partially mitigated body weight loss but significantly reduced pathology and virus replication in the lung. These findings suggest that FCV could potentially be developed as a pan-adenoviral inhibitor.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Infecções por Citomegalovirus , Infecções por Adenovirus Humanos/tratamento farmacológico , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Cricetinae , Infecções por Citomegalovirus/tratamento farmacológico , Humanos , Replicação Viral
9.
J Bacteriol ; 202(18)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32601072

RESUMO

The Pseudomonas aeruginosa type III secretion system (T3SS) needle comprised of multiple PscF subunits is essential for the translocation of effector toxins into human cells, facilitating the establishment and dissemination of infection. Mutations in the pscF gene provide resistance to the phenoxyacetamide (PhA) series of T3SS inhibitory chemical probes. To better understand PscF functions and interactions with PhA, alleles of pscF with 71 single mutations altering 49 of the 85 residues of the encoded protein were evaluated for their effects on T3SS phenotypes. Of these, 37% eliminated and 63% maintained secretion, with representatives of both evenly distributed across the entire protein. Mutations in 14 codons conferred a degree of PhA resistance without eliminating secretion, and all but one were in the alpha-helical C-terminal 25% of PscF. PhA-resistant mutants exhibited no cross-resistance to two T3SS inhibitors with different chemical scaffolds. Two mutations caused constitutive T3SS secretion. The pscF allele at its native locus, whether wild type (WT), constitutive, or PhA resistant, was dominant over other pscF alleles expressed from nonnative loci and promoters, but mixed phenotypes were observed in chromosomal ΔpscF strains with both WT and mutant alleles at nonnative loci. Some PhA-resistant mutants exhibited reduced translocation efficiency that was improved in a PhA dose-dependent manner, suggesting that PhA can bind to those resistant needles. In summary, these results are consistent with a direct interaction between PhA inhibitors and the T3SS needle, suggest a mechanism of blocking conformational changes, and demonstrate that PscF affects T3SS regulation, as well as carrying out secretion and translocation.IMPORTANCEP. aeruginosa effector toxin translocation into host innate immune cells is critical for the establishment and dissemination of P. aeruginosa infections. The medical need for new anti-P. aeruginosa agents is evident by the fact that P. aeruginosa ventilator-associated pneumonia is associated with a high mortality rate (40 to 69%) and recurs in >30% of patients, even with standard-of-care antibiotic therapy. The results described here confirm roles for the PscF needle in T3SS secretion and translocation and suggest that it affects regulation, possibly by interaction with T3SS regulatory proteins. The results also support a model of direct interaction of the needle with PhA and suggest that, with further development, members of the PhA series may prove useful as drugs for P. aeruginosa infection.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Sistemas de Secreção Tipo III/antagonistas & inibidores , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação , Fenoxiacetatos/farmacologia , Pseudomonas aeruginosa/genética , Relação Estrutura-Atividade
10.
Antiviral Res ; 175: 104713, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31968222

RESUMO

The third generation of methylenecyclopropane nucleoside analogs (MCPNAs) elicit an anti-viral effect against all three sub-classes of herpes viruses without inducing cytotoxicity in vitro. It has been previously established that the mechanism of action of MCPNAs is similar to that of ganciclovir (GCV) or acyclovir (ACV). However, the activation of MBX-2168, a third generation MCPNA, involves additional and unique enzymatic steps and this process has not been examined in virus-infected cells. To that end, herpes virus-infected cells were incubated with MBX-2168, synguanol, GCV, or ACV. Incubation of HCMV-infected cells with five times the EC50 of MBX-2168 (4.0 µM), synguanol (10.5 µM), or GCV (25 µM) resulted in a time-dependent increase in triphosphate accumulation reaching a maximum of 48.1 ± 5.5, 45.5 ± 2.5, and 42.6 ± 3.7 pmol/106 cells at 120 h, respectively. Additionally, half-lives of these compounds were similar in HCMV-infected cells (GCV-TP = 25.5 ± 2.7 h; MBX-2168-TP/synguanol-TP = 23.0 ± 1.4 h). HSV-1-infected cells incubated with five times the EC50 of MBX-2168 (33.5 µM) or ACV (5.0 µM) demonstrated a time-dependent increase in triphosphate levels reaching a maximum of 12.3 ± 1.5 and 11.6 ± 0.7 pmol/106 cells at 24 h, respectively. ACV-TP and MBX-2168-TP also had similar half-lives under these conditions (27.3 ± 4.8 h and 22.2 ± 2.2 h, respectively). We therefore conclude that although MBX-2168 does not follow the classical route of nucleoside analog activation, the metabolic profile of MBX-2168 is similar to other nucleoside analogs such as GCV and ACV that do.


Assuntos
Antivirais/metabolismo , Ciclopropanos/metabolismo , Guanina/análogos & derivados , Herpesvirus Humano 1/efeitos dos fármacos , Polifosfatos/análise , Aciclovir/farmacologia , Animais , Chlorocebus aethiops , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/fisiologia , Fibroblastos/virologia , Ganciclovir/farmacologia , Guanina/biossíntese , Guanina/metabolismo , Meia-Vida , Herpesvirus Humano 1/fisiologia , Humanos , Cinética , Masculino , Nucleosídeos/biossíntese , Nucleosídeos/metabolismo , Polifosfatos/metabolismo , Células Vero
11.
Antiviral Res ; 176: 104710, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31940473

RESUMO

Human cytomegalovirus (HCMV) infections are widespread among the human population. Infection is persistent and mostly asymptomatic, except in immunocompromised individuals, particularly transplant patients, where significant morbidity and mortality can occur. Currently approved drugs for treating HCMV-related disease [including ganciclovir (GCV), valganciclovir (VGCV), cidofovir (CDV) and foscarnet (FOS)] all target the viral DNA polymerase and suffer from dose-limiting toxicity and resistance issues. The most recently approved drug, letermovir (LMV), was approved only for prophylaxis in adult HCMV-seropositive stem cell transplant recipients. Although LMV is highly potent, high-grade resistance mutations in the terminase gene were shown to readily emerge in vitro and in treated patients. Therefore, there is a need for new drugs that can be used for combinatorial therapeutic and/or prophylactic regimens to counteract the emergence of resistant mutants. Filociclovir (FCV), also known as cyclopropavir or MBX-400, is a methylenecyclopropane nucleoside analog, which has successfully completed Phase I safety studies, and is now entering Phase II clinical efficacy studies for the treatment of HCMV-related disease in transplant patients. FCV is 10-fold more active than GCV against HCMV in vitro, and has activity against all human herpesviruses except HSV-1 and HSV-2. Recently, FCV was also shown to be highly potent against human adenoviruses. This activity spectrum suggests that FCV could be used to treat/prevent infection with several viruses that pose significant risk to transplant patients. The active triphosphate form of FCV (FCV-TP) reaches higher peak levels than GCV-TP in HCMV-infected cells, and exhibits about 10-fold higher affinity to HCMV DNA polymerase UL54. Furthermore, FCV was shown to retain activity against a panel of GCV-resistant HCMV isolates, suggesting that it could be a useful alternative therapy for treating patients infected with some GCV-resistant HCMV strains. This review summarizes the early discovery work of FCV and highlights the recent advances in the continued development of this clinical candidate.


Assuntos
Antivirais/farmacologia , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/prevenção & controle , Descoberta de Drogas , Ensaios Clínicos como Assunto , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/fisiologia , Farmacorresistência Viral , Humanos , Nucleosídeos/farmacologia , Replicação Viral/efeitos dos fármacos
12.
ACS Infect Dis ; 6(3): 489-502, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31899866

RESUMO

Marburg virus (MARV) causes severe disease in humans and is known to activate nuclear factor erythroid 2-related factor 2 (Nrf2), the major transcription factor of the antioxidant response. Canonical activation of Nrf2 involves oxidative or electrophilic stress that prevents Kelch-like ECH-associated protein 1 (Keap1) targeted degradation of Nrf2, leading to Nrf2 stabilization and activation of the antioxidant response. MARV activation of Nrf2 is noncanonical with the MARV VP24 protein (mVP24) interacting with Keap1, freeing Nrf2 from degradation. A high-throughput screening (HTS) assay was developed to identify inhibitors of mVP24-induced Nrf2 activity and used to screen more than 55,000 compounds. Hit compounds were further screened against secondary HTS assays for the inhibition of antioxidant activity induced by additional canonical and noncanonical mechanisms. This pipeline identified 14 compounds that suppress the response, dependent on the inducer, with 50% inhibitory concentrations below 5 µM and selectivity index values greater than 10. Notably, several of the identified compounds specifically inhibit mVP24-induced Nrf2 activity.


Assuntos
Expressão Gênica/efeitos dos fármacos , Marburgvirus/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Oxirredução/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Antioxidantes , Regulação da Expressão Gênica , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Fator 2 Relacionado a NF-E2/genética , Ligação Proteica , Proteínas Virais/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-31332074

RESUMO

To determine the mechanism of action of third-generation methylenecyclopropane nucleoside analogs (MCPNAs), DNA sequencing of herpes simplex virus 1 (HSV-1) isolates resistant to third-generation MCPNAs resulted in the discovery of G841S and N815S mutations in HSV-1 UL30. Purified HSV-1 UL30 or human cytomegalovirus (HCMV) UL54 was then subjected to increasing concentrations of MBX-2168-triphosphate (TP), with results demonstrating a 50% inhibitory concentration (IC50) of ∼200 µM, indicating that MBX-2168-TP does not inhibit the viral DNA polymerase. Further metabolic studies showed the removal of a moiety on the guanine ring of MBX-2168. Therefore, we hypothesized that enzymatic removal of a moiety at the 6-position of the guanine ring of third-generation MCPNAs is an essential step in activation. To test this hypothesis, pentostatin (deoxycoformycin [dCF]), an adenosine deaminase-like protein 1 (ADAL-1) inhibitor, was coincubated with MBX-2168. The results showed that dCF antagonized the effect of MBX-2168, with a >40-fold increase in the 50% effective concentration (EC50) at 50 µM dCF (EC50 of 63.1 ± 8.7 µM), compared with MBX-2168 alone (EC50 of 0.2 ± 0.1 µM). Purified ADAL-1 demonstrated time-dependent removal of the moiety on the guanine ring of MBX-2168-monophosphate (MP), with a Km of 17.5 ± 2.4 µM and a Vmax of 0.12 ± 0.04 nmol min-1 Finally, synguanol-TP demonstrated concentration-dependent inhibition of HSV-1 UL30 and HCMV UL54, with IC50s of 0.33 ± 0.16 and 0.38 ± 0.11 µM, respectively. We conclude that ADAL-1 is the enzyme responsible for removing the moiety from the guanine ring of MBX-2168-MP prior to conversion to a TP, the active compound that inhibits the viral DNA polymerase.


Assuntos
Adenosina Desaminase/metabolismo , Ciclopropanos/química , Ciclopropanos/farmacologia , Nucleosídeos/análogos & derivados , Nucleosídeos/farmacologia , Adenosina Desaminase/genética , Animais , Chlorocebus aethiops , Cromatografia Líquida de Alta Pressão , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/patogenicidade , DNA Viral/genética , Guanina/análogos & derivados , Guanina/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/patogenicidade , Humanos , Análise de Sequência de DNA/métodos , Células Vero , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética , Replicação Viral/fisiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-31285228

RESUMO

Filociclovir (MBX-400, cyclopropavir) is an antiviral agent with activity against cytomegalovirus (CMV). A phase 1, double-blind, randomized, placebo-controlled (3:1 ratio), single-center, multiple-ascending-dose trial was conducted to assess the safety, tolerability, and pharmacokinetics of filociclovir. Filociclovir (n = 18) or placebo (n = 6) was administered as a daily oral dose (100 mg, 350 mg, or 750 mg) for 7 days to normal healthy adults (ages, 25 to 65 years) who were monitored for 22 days. Safety assessments included clinical, laboratory, and electrocardiogram monitoring. Plasma and urine samplings were used to determine pharmacokinetic parameters. All study product-related adverse events were mild, most commonly gastrointestinal (17%), nervous system (11%), and skin and subcutaneous tissue (11%) disorders. One subject had reversible grade 3 elevation in serum creatinine and bilirubin, which was associated with an ∼1-log increase in plasma filociclovir exposure compared to levels for other subjects in the same (750-mg) cohort. No other serious adverse events were observed. Plasma exposures (area under the concentration-time curve from 0 to 24 h [AUC0-24]) on days 1 and 7 were similar, suggesting negligible dose accumulation. There was a sublinear increase in plasma exposure with dose, which plateaued at the daily dose of 350 mg. The amount of filociclovir recovered in the urine remained proportional to plasma exposure (AUC). Doses as low as 100 mg achieved plasma concentrations sufficient to inhibit CMV in vitro (This study has been registered at ClinicalTrials.gov under identifier NCT02454699.).


Assuntos
Antivirais/efeitos adversos , Antivirais/farmacocinética , Citomegalovirus/efeitos dos fármacos , Adulto , Idoso , Antivirais/sangue , Antivirais/uso terapêutico , Citomegalovirus/patogenicidade , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Feminino , Meia-Vida , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade
15.
Bioorg Med Chem Lett ; 29(17): 2480-2482, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31358469

RESUMO

Enantiomeric 3-deaza-1',6'-isoneplanocins (C-3 unsubstituted 7a/7b and C-3 with a bromine 8a/8b) lacking the 4'-hydroxymethyl as mechanistically designed anti-viral targets have been prepared by utilizing the Ullmann reaction. Anti-Ebola properties were found for the D-like 7a and 8a and L-like 8b. All four products showed effects against human cytomegalovirus while D-like 7a/8a affected measles; 7a was effective versus norovirus and 8a inhibited Pichinde. Both 7a and 8a produced SAHase inhibitory effects. However, the anti-EBOV activity of 7a and 8a cannot be readily correlated with this observation due with their contrasting IC50 values (8a > 7a). It is to be noted that 7b showed no effects on this enzyme and 8b was minimally inhibitory. These results offer preliminary insight into the differing mechanisms of action of D- and L- like structures and enlighten structural features to guide additional antiviral agent pursuit in the isoneplanocin series.


Assuntos
Adenosina/análogos & derivados , Antivirais/síntese química , Adenosina/síntese química , Adenosina/farmacologia , Adenosil-Homocisteinase/antagonistas & inibidores , Adenosil-Homocisteinase/metabolismo , Animais , Antivirais/química , Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Ebolavirus/efeitos dos fármacos , Eritrócitos/enzimologia , Humanos , Norovirus/efeitos dos fármacos , Coelhos , Estereoisomerismo
16.
J Antibiot (Tokyo) ; 72(9): 693-701, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31164713

RESUMO

New antibiotics that are active against multi-drug-resistant strains and difficult-to-treat bacterial infections are needed. Synthetic modification of spectinomycin, a bacterial protein synthesis inhibitor, has been shown to increase antibacterial activity compared with spectinomycin. Aminomethyl spectinomycins are active against Gram-negative and Gram-positive bacterial pathogens. In this study, the ability of aminomethyl spectinomycins to treat biothreat pathogens is examined by MIC profiling, synergy testing, and in vivo efficacy experiments. Compound 1950 exhibited potent antibacterial activity against Gram-negative pathogens Brucella spp., Burkholderia mallei, and Francisella tularensis, but showed little to no growth inhibition against Burkholderia pseudomallei, Bacillus anthracis, and Yersinia pestis. Combination testing in checkerboard assays revealed that aminomethyl spectinomycin-antibiotic combinations had mainly an additive effect against the susceptible biodefense pathogens. The in vivo efficacy of compound 1950 was also demonstrated in mice infected with B. mallei (FMH) or F. tularensis (SchuS4). These results suggest that aminomethyl spectinomycins are promising new candidates for development of therapeutics against biodefense bacterial agents.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Espectinomicina/análogos & derivados , Espectinomicina/farmacologia , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Modelos Animais de Doenças , Interações Medicamentosas , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Espectinomicina/química , Espectinomicina/uso terapêutico , Resultado do Tratamento
17.
Artigo em Inglês | MEDLINE | ID: mdl-30858215

RESUMO

The most frequent ailment for which antibiotics are prescribed is otitis media (ear infections), which is most commonly caused by Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae Treatment of otitis media is complicated by the fact that the bacteria in the middle ear typically form biofilms, which can be recalcitrant to antibiotic treatment. Furthermore, bacterial respiratory infections can be greatly exacerbated by viral coinfection, which is particularly evidenced by the synergy between influenza and S. pneumoniae In this study, we sought to ascertain the in vivo efficacy of aminomethyl spectinomycin lead 1950, an effective antibacterial agent both in vitro and in vivo against Streptococcus pneumoniae in the context of complex respiratory infections and acute otitis media. A single dose of 1950 significantly reduced bacterial burden in the respiratory tract for all three pathogens, even when species were present in a coinfection model. Additionally, a single dose of 1950 effectively reduced pneumococcal acute otitis media from the middle ear. The agent 1950 also proved efficacious in the context of influenza-pneumococcal super infection. These data further support the development of this family of compounds as potential therapeutic agents against the common causes of complex upper respiratory tract infections and acute otitis media.


Assuntos
Infecções Respiratórias/tratamento farmacológico , Espectinomicina/uso terapêutico , Animais , Feminino , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Moraxella catarrhalis/efeitos dos fármacos , Moraxella catarrhalis/patogenicidade , Otite Média/tratamento farmacológico , Otite Média/microbiologia , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia , Espectinomicina/administração & dosagem , Espectinomicina/química , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/patogenicidade
18.
Bioorg Med Chem Lett ; 28(23-24): 3674-3675, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30385162

RESUMO

A convenient stereospecific synthesis of 6'-fluoro-3-deazaneplanocin (6) has been accomplished from d-ribose in 15 steps. It is reported to possess significant activity towards Ebola (Zaire, Vero, µM: EC50 < 0.36; CC50 125; SI > 347) with moderate inhibition of the target enzyme (S-adenosylhomocysteine hydrolase), which did not correlate directly with its anti-Ebola effects. Compound 6, with limited cytotoxicity, also displayed activity against measles, H1N1 and Pichinde.


Assuntos
Adenosina/análogos & derivados , Antivirais/síntese química , Adenosina/síntese química , Adenosina/química , Adenosina/farmacologia , Adenosil-Homocisteinase/antagonistas & inibidores , Adenosil-Homocisteinase/metabolismo , Animais , Antivirais/química , Antivirais/farmacologia , Chlorocebus aethiops , Ebolavirus/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Concentração Inibidora 50 , Células Vero
19.
Antiviral Res ; 159: 104-112, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30287226

RESUMO

The search for new compounds with a broad spectrum of antiviral activity is important and requires the evaluation of many compounds against several distinct viruses. Researchers attempting to develop new antiviral therapies for DNA virus infections currently use a variety of cell lines, assay conditions and measurement methods to determine in vitro drug efficacy, making it difficult to compare results from within the same laboratory as well as between laboratories. In this paper we describe a common assay platform designed to facilitate the parallel evaluation of antiviral activity against herpes simplex virus type 1, herpes simplex virus type 2, varicella-zoster virus, cytomegalovirus, vaccinia virus, cowpox virus, and adenovirus. The automated assays utilize monolayers of primary human foreskin fibroblast cells in 384-well plates as a common cell substrate and cytopathic effects and cytotoxicity are quantified with CellTiter-Glo. Data presented demonstrate that each of the assays is highly robust and yields data that are comparable to those from other traditional assays, such as plaque reduction assays. The assays proved to be both accurate and robust and afford an in depth assessment of antiviral activity against the diverse class of viruses with very small quantities of test compounds. In an accompanying paper, we present a standardized approach to evaluating antivirals against lymphotropic herpesviruses and polyomaviruses and together these studies revealed new activities for reference compounds. This approach has the potential to accelerate the development of broad spectrum therapies for the DNA viruses.


Assuntos
Adenoviridae/efeitos dos fármacos , Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Orthopoxvirus/efeitos dos fármacos , Ensaio de Placa Viral/normas , Células Cultivadas , Citomegalovirus/efeitos dos fármacos , Efeito Citopatogênico Viral , Infecções por Vírus de DNA/tratamento farmacológico , Fibroblastos , Herpesvirus Humano 2/efeitos dos fármacos , Herpesvirus Humano 3/efeitos dos fármacos , Humanos
20.
Antiviral Res ; 159: 122-129, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30287227

RESUMO

The search for new compounds with a broad spectrum of antiviral activity is important and requires the evaluation of many compounds against several distinct viruses. Researchers attempting to develop new antiviral therapies for DNA virus infections currently use a variety of cell lines, assay conditions and measurement methods to determine in vitro drug efficacy, making it difficult to compare results from within the same laboratory as well as between laboratories. In this paper, we describe the assessment of antiviral activity of a set of nucleoside analogs against BK polyomavirus, JC polyomavirus, Epstein-Barr virus, human herpesvirus 6B, and human herpesvirus 8 in an automated 384-well format and utilize qPCR assays to measure the accumulation of viral DNA. In an accompanying paper, we present a standardized approach to evaluating antivirals against additional herpesviruses, orthopoxviruses, and adenovirus. Together, they reveal new activities for reference compounds and help to define the spectrum of antiviral activity for a set of nucleoside analogs against a set of 12 DNA viruses that infect humans including representative human herpesviruses, orthopoxviruses, adenoviruses, and polyomaviruses. This analysis helps provide perspective on combinations of agents that would help provide broad coverage of significant pathogens in immunocompromised patients as well as against emerging infections.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas/normas , Herpesviridae/efeitos dos fármacos , Nucleosídeos/farmacologia , Polyomavirus/efeitos dos fármacos , Automação Laboratorial , DNA Viral/análise , Descoberta de Drogas/métodos , Humanos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...