Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(3): e0011623, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38358284

RESUMO

Here, we report the draft genome sequence of Exiguobacterium sp. strain MMG028, isolated from Rose Creek, San Diego, CA, USA, assembled and analyzed by undergraduate students participating in a marine microbial genomics course. A genomic comparison suggests that MMG028 is a novel species, providing a resource for future microbiology and biotechnology investigations.

2.
J Photochem Photobiol B ; 216: 112150, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33578335

RESUMO

BACKGROUND: In a recent study we showed that blue light inactivates methicillin-resistant Staphylococcus aureus (MRSA) by perturbing, depolarizing, and disrupting its cell membrane. PURPOSE: The current study presents visual evidence that the observed biochemical changes also result in cell metabolic changes and structural alteration of the cell membrane. METHODS: Cultures of MRSA were treated with 450 nm pulsed blue light (PBL) at 3 mW/cm2 irradiance, using a sub lethal dose of 2.7 J/cm2 radiant exposure three times at 30-min intervals. Following 24 h incubation at 37 °C, irradiated colonies and control non-irradiated colonies were processed for light and transmission electron microscopy. RESULTS: The images obtained revealed three major effects of PBL; (1) disruption of MRSA cell membrane, (2) alteration of membrane structure, and (3) disruption of cell replication. CONCLUSION: These signs of bacterial inactivation at a dose deliberately selected to be sub-lethal supports our previous finding that rapid depolarization of bacterial cell membrane and disruption of cellular function comprise another mechanism underlying photo-inactivation of bacteria. Further, it affirms the potency of PBL.


Assuntos
Membrana Celular/efeitos da radiação , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Técnicas de Cultura de Células , Contagem de Colônia Microbiana , Relação Dose-Resposta à Radiação , Luz , Staphylococcus aureus Resistente à Meticilina/metabolismo , Viabilidade Microbiana/efeitos da radiação
3.
J Photochem Photobiol B ; 216: 112149, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33578336

RESUMO

INTRODUCTION: Recently, it was shown that Group B Streptococcus (GBS) COH1 strain, which has granadaene-an endogenous chromophore known to absorb blue light-is not susceptible to 450 nm pulsed blue light (PBL) inactivation unless the bacterium is co-cultured with exogenous porphyrin. PURPOSE: To confirm or refute the finding, we studied the effect of blue light on NCTC, another strain of GBS with more granadaene than COH1, to determine if the abundance of granadaene-and by implication more absorption of blue light-fosters GBS susceptibility to PBL. METHODS: We irradiated cultures of the bacterium with or without protoporphyrin, coproporphyrin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide (NAD) or NADH. After 24-h incubation, bacterial colonies were enumerated, log10 CFU/mL computed, and descriptive and inferential data analyzed and compared. RESULTS: (1) The rich amount of granadaene in NCTC did not enhance its susceptibility to antimicrobial pulsed blue light (PBL). (2) Adding exogenous porphyrin fostered NCTC susceptibility to irradiation, resulting in 100% bacterial suppression. (3) Exogenous FMN or FAD, which strongly absorb 450 nm light, did not promote the antimicrobial effect of PBL, neither did exogenous NAD or NADH, two weak blue light-absorbing photosensitizers. CONCLUSION: These results strengthen our previous assertion that an endogenous chromophore with the capacity to absorb and transform light energy into a biochemical process that engenders bacterial cell death, is essential for 450 nm PBL to suppress GBS.


Assuntos
Fármacos Fotossensibilizantes/química , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/efeitos da radiação , Apoptose/efeitos da radiação , Técnicas de Cultura de Células , Relação Dose-Resposta à Radiação , Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/química , Luz , NAD/química , Porfirinas/química , Fatores de Tempo
4.
J Photochem Photobiol B ; 212: 111996, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32863128

RESUMO

It is well documented that blue light absorption by bacterial chromophores triggers downstream production of reactive oxygen species (ROS), which in turn results in bacterial cell death. To elucidate the importance of chromophores in the bactericidal effect of blue light, and to determine whether blue light absorption per se or the presence of porphyrins known to engender ROS is crucial in blue light treatment, we studied the effect of 450 nm pulsed light on Streptococcus agalactiae, also known as Group B Streptococcus (GBS) strain COH1. GBS does not synthesize porphyrins but has a blue light-absorbing chromophore, granadaene. We irradiated planktonic cultures of GBS with or without exogenous chromophore supplementation using either protoporphyrin IX (PPIX), coproporphyrin III (CPIII), Nicotinamide adenine dinucleotide (NAD), reduced nicotinamide adenine dinucleotide (NADH), Flavin adenine dinucleotide (FAD), or Flavin mononucleotide (FMN). Quantification of surviving bacterial colonies, presented as percent survival and CFU/mL (log10), showed that (1) 450 nm blue light does not suppress the growth of GBS, even though its endogenous chromophore, granadaene, absorbs light in the 450 nm spectrum. (2) The addition of either of the two exogenous porphyrins, PPIX or CPIII, significantly suppressed GBS, indicating the importance of porphyrins in the antimicrobial action of blue light. (3) Adding exogenous FMN or FAD, two known absorbers of 450 nm light, minimally potentiated the bactericidal effect of blue light, again confirming that mere absorption of blue light by chromophores does not necessarily result in bacterial suppression. (4) Irradiation of GBS with or without NAD+ or NADH supplementation-two weak absorbers of 450 nm light-minimally suppressed GBS, indicating that a blue light-absorbing chromophore is essential for the bactericidal action of blue light. (5) Collectively, these findings show that in addition to the presence of a blue light-absorbing chromophore in bacteria, a chromophore with the right metabolic machinery and biochemical structure, capable of producing ROS, is necessary for 450 nm blue light to suppress GBS.


Assuntos
Luz , Porfirinas/química , Porfirinas/farmacologia , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/efeitos da radiação , Interações Medicamentosas , Flavina-Adenina Dinucleotídeo/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , NAD/farmacologia , Streptococcus agalactiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA