Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Digit Health ; 3: 727504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34870267

RESUMO

Mobile measures of human circadian rhythms (CR) are needed in the age of chronotherapy. Two wearable measures of CR have recently been validated: one that uses heart rate to extract circadian rhythms that originate in the sinoatrial node of the heart, and another that uses activity to predict the laboratory gold standard and central circadian pacemaker marker, dim light melatonin onset (DLMO). We first find that the heart rate markers of normal real-world individuals align with laboratory DLMO measurements when we account for heart rate phase error. Next, we expand upon previous work that has examined sleep patterns or chronotypes during the COVID-19 lockdown by studying the effects of social distancing on circadian rhythms. In particular, using data collected from the Social Rhythms app, a mobile application where individuals upload their wearable data and receive reports on their circadian rhythms, we compared the two circadian phase estimates before and after social distancing. Interestingly, we found that the lockdown had different effects on the two ambulatory measurements. Before the lockdown, the two measures aligned, as predicted by laboratory data. After the lockdown, when circadian timekeeping signals were blunted, these measures diverged in 70% of subjects (with circadian rhythms in heart rate, or CRHR, becoming delayed). Thus, while either approach can measure circadian rhythms, both are needed to understand internal desynchrony. We also argue that interventions may be needed in future lockdowns to better align separate circadian rhythms in the body.

2.
Cell Rep Methods ; 1(4)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34568865

RESUMO

Millions of wearable-device users record their heart rate (HR) and activity. We introduce a statistical method to extract and track six key physiological parameters from these data, including an underlying circadian rhythm in HR (CRHR), the direct effects of activity, and the effects of meals, posture, and stress through hormones like cortisol. We test our method on over 130,000 days of real-world data from medical interns on rotating shifts, showing that CRHR dynamics are distinct from those of sleep-wake or physical activity patterns and vary greatly among individuals. Our method also estimates a personalized phase-response curve of CRHR to activity for each individual, representing a passive and personalized determination of how human circadian timekeeping continually changes due to real-world stimuli. We implement our method in the "Social Rhythms" iPhone and Android app, which anonymously collects data from wearable-device users and provides analysis based on our method.


Assuntos
Sono , Dispositivos Eletrônicos Vestíveis , Humanos , Sono/fisiologia , Ritmo Circadiano/fisiologia , Hidrocortisona , Frequência Cardíaca
3.
R Soc Open Sci ; 8(1): 200531, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33614060

RESUMO

Effective intervention strategies for epidemics rely on the identification of their origin and on the robustness of the predictions made by network disease models. We introduce a Bayesian uncertainty quantification framework to infer model parameters for a disease spreading on a network of communities from limited, noisy observations; the state-of-the-art computational framework compensates for the model complexity by exploiting massively parallel computing architectures. Using noisy, synthetic data, we show the potential of the approach to perform robust model fitting and additionally demonstrate that we can effectively identify the disease origin via Bayesian model selection. As disease-related data are increasingly available, the proposed framework has broad practical relevance for the prediction and management of epidemics.

4.
R Soc Open Sci ; 6(10): 182229, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31824680

RESUMO

Patient-specific modelling of haemodynamics in arterial networks has so far relied on parameter estimation for inexpensive or small-scale models. We describe here a Bayesian uncertainty quantification framework which makes two major advances: an efficient parallel implementation, allowing parameter estimation for more complex forward models, and a system for practical model selection, allowing evidence-based comparison between distinct physical models. We demonstrate the proposed methodology by generating simulated noisy flow velocity data from a branching arterial tree model in which a structural defect is introduced at an unknown location; our approach is shown to accurately locate the abnormality and estimate its physical properties even in the presence of significant observational and systemic error. As the method readily admits real data, it shows great potential in patient-specific parameter fitting for haemodynamical flow models.

5.
R Soc Open Sci ; 6(3): 181657, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31032022

RESUMO

We investigate with computer simulations the critical radius of pores in a lipid bilayer membrane. Ilton et al. (Ilton et al. 2016 Phys. Rev. Lett. 117, 257801 (doi:10.1103/PhysRevLett.117.257801)) recently showed that nucleated pores in a homopolymer film can increase or decrease in size, depending on whether they are larger or smaller than a critical size which scales linearly with film thickness. Using dissipative particle dynamics, a particle-based simulation method, we investigate the same scenario for a lipid bilayer membrane whose structure is determined by lipid-water interactions. We simulate a perforated membrane in which holes larger than a critical radius grow, while holes smaller than the critical radius close, as in the experiment of Ilton et al. (Ilton et al. 2016 Phys. Rev. Lett. 117, 257801 (doi:10.1103/PhysRevLett.117.257801)). By altering key system parameters such as the number of particles per lipid and the periodicity, we also describe scenarios in which pores of any initial size can seal or even remain stable, showing a fundamental difference in the behaviour of lipid membranes from polymer films.

6.
Phys Rev Lett ; 118(4): 048002, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28186790

RESUMO

We investigate with experiments and computer simulations the nonequilibrium dynamics of DNA polymers crossing arrays of entropic barriers in nanofluidic devices in a pressure-driven flow. With increasing driving pressure, the effective diffusivity of DNA rises and then peaks at a value that is many times higher than the equilibrium diffusivity. This is an entropic manifestation of "giant acceleration of diffusion." The phenomenon is sensitive to the effective energy landscape; thus, it offers a unique probe of entropic barriers in a system driven away from equilibrium.


Assuntos
DNA/química , Simulação por Computador , Difusão , Entropia , Modelos Químicos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...