Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Oecologia ; 194(4): 735-744, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33130915

RESUMO

Understanding how global change drivers (GCDs) affect aboveground net primary production (ANPP) through time is essential to predicting the reliability and maintenance of ecosystem function and services in the future. While GCDs, such as drought, warming and elevated nutrients, are known to affect mean ANPP, less is known about how they affect inter-annual variability in ANPP. We examined 27 global change experiments located in 11 different herbaceous ecosystems that varied in both abiotic and biotic conditions, to investigate changes in the mean and temporal variability of ANPP (measured as the coefficient of variation) in response to different GCD manipulations, including resource additions, warming, and irrigation. From this comprehensive data synthesis, we found that GCD treatments increased mean ANPP. However, GCD manipulations both increased and decreased temporal variability of ANPP (24% of comparisons), with no net effect overall. These inconsistent effects on temporal variation in ANPP can, in part, be attributed to site characteristics, such as mean annual precipitation and temperature as well as plant community evenness. For example, decreases in temporal variability in ANPP with the GCD treatments occurred in wetter and warmer sites with lower plant community evenness. Further, the addition of several nutrients simultaneously increased the sensitivity of ANPP to interannual variation in precipitation. Based on this analysis, we expect that GCDs will likely affect the magnitude more than the reliability over time of ecosystem production in the future.


Assuntos
Ecossistema , Chuva , Secas , Plantas , Poaceae , Reprodutibilidade dos Testes
2.
Proc Natl Acad Sci U S A ; 116(36): 17867-17873, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427510

RESUMO

Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity-ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.


Assuntos
Biodiversidade , Ecossistema , Plantas , Teorema de Bayes , Mudança Climática , Atividades Humanas , Humanos
3.
Nat Plants ; 5(7): 697-705, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31263243

RESUMO

Atmospheric nitrogen and sulfur pollution increased over much of the United States during the twentieth century from fossil fuel combustion and industrial agriculture. Despite recent declines, nitrogen and sulfur deposition continue to affect many plant communities in the United States, although which species are at risk remains uncertain. We used species composition data from >14,000 survey sites across the contiguous United States to evaluate the association between nitrogen and sulfur deposition and the probability of occurrence for 348 herbaceous species. We found that the probability of occurrence for 70% of species was negatively associated with nitrogen or sulfur deposition somewhere in the contiguous United States (56% for N, 51% for S). Of the species, 15% and 51% potentially decreased at all nitrogen and sulfur deposition rates, respectively, suggesting thresholds below the minimum deposition they receive. Although more species potentially increased than decreased with nitrogen deposition, increasers tended to be introduced and decreasers tended to be higher-value native species. More vulnerable species tended to be shorter with lower tissue nitrogen and magnesium. These relationships constitute predictive equations to estimate critical loads. These results demonstrate that many herbaceous species may be at risk from atmospheric deposition and can inform improvements to air quality policies in the United States and globally.


Assuntos
Nitrogênio/química , Plantas/química , Enxofre/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/metabolismo , Poluição do Ar , Monitoramento Ambiental , Cinética , Nitrogênio/metabolismo , Plantas/classificação , Plantas/metabolismo , Enxofre/metabolismo , Estados Unidos
4.
Glob Chang Biol ; 24(12): 5668-5679, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30369019

RESUMO

The responses of species to environmental changes will determine future community composition and ecosystem function. Many syntheses of global change experiments examine the magnitude of treatment effect sizes, but we lack an understanding of how plant responses to treatments compare to ongoing changes in the unmanipulated (ambient or background) system. We used a database of long-term global change studies manipulating CO2 , nutrients, water, and temperature to answer three questions: (a) How do changes in plant species abundance in ambient plots relate to those in treated plots? (b) How does the magnitude of ambient change in species-level abundance over time relate to responsiveness to global change treatments? (c) Does the direction of species-level responses to global change treatments differ from the direction of ambient change? We estimated temporal trends in plant abundance for 791 plant species in ambient and treated plots across 16 long-term global change experiments yielding 2,116 experiment-species-treatment combinations. Surprisingly, for most species (57%) the magnitude of ambient change was greater than the magnitude of treatment effects. However, the direction of ambient change, whether a species was increasing or decreasing in abundance under ambient conditions, had no bearing on the direction of treatment effects. Although ambient communities are inherently dynamic, there is now widespread evidence that anthropogenic drivers are directionally altering plant communities in many ecosystems. Thus, global change treatment effects must be interpreted in the context of plant species trajectories that are likely driven by ongoing environmental changes.


Assuntos
Biodiversidade , Mudança Climática , Fenômenos Fisiológicos Vegetais , Dióxido de Carbono , Ecossistema , Temperatura , Água
5.
Ecol Appl ; 28(7): 1762-1772, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30179279

RESUMO

The realization that anthropogenic nitrogen (N) deposition is causing significant environmental change in many ecosystems has led to lower emissions of reactive N and deposition rates in many regions. However, the impacts of N deposition on terrestrial ecosystems can be long lasting, with significant inertia in the return of the biota and biogeochemical processes to baseline levels. To better understand patterns of recovery and the factors that may contribute to slow or no responses following declines in N deposition, we followed plant species composition, microbial abundance, N cycling rates, soil pH, and pools of NO3- and extractable cations in an impacted alpine ecosystem following cessation of 12-yr experiment increasing N deposition rates by 0, 20, 40, and 60 kg N·ha-1 ·yr-1 . Simulated N deposition had resulted in a tripling in the cover of the nitrophilic species Carex rupestris, while the dominant sedge Kobresia myosuroides had decreased by more than half at the highest N input level. In addition, nitrification rates were elevated, soil extractable magnesium (Mg2+ ) and pH decreased, and aluminum (Al3+ ) and manganese (Mn2+ ) were elevated at the highest N treatment inputs. Over the nine years following cessation of N additions to the impacted plots, only the cover of the nitrophilic C. rupestris showed any recovery to prior levels. Abundances of both bacteria and fungi were lower with N addition in both treatment and recovery plots. Rates of nitrification and pools of NO3- remained elevated in the recovery plots, likely contributing to the lack of biotic response to the cessation of N inputs. In addition, nutrient base cations (Ca2+ and Mg2+ ) and soil pH remained depressed, and the toxic metal cations (Al3+ and Mn2+ ) remained elevated in recovery plots, also potentially influencing biotic recovery. These results emphasize the importance of considering long-term environmental impacts of N deposition associated with legacy effects, such as elevated N cycling and losses of base cations, in determining environmental standards such as the metrics used for critical loads.


Assuntos
Conservação dos Recursos Naturais , Cyperaceae/fisiologia , Pradaria , Ciclo do Nitrogênio , Solo/química , Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Microbiologia do Solo
6.
Ecol Lett ; 20(12): 1534-1545, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29067791

RESUMO

Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species' populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales.


Assuntos
Biodiversidade , Ecossistema , Plantas , Reprodutibilidade dos Testes
7.
Proc Natl Acad Sci U S A ; 113(15): 4086-91, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035943

RESUMO

Atmospheric nitrogen (N) deposition has been shown to decrease plant species richness along regional deposition gradients in Europe and in experimental manipulations. However, the general response of species richness to N deposition across different vegetation types, soil conditions, and climates remains largely unknown even though responses may be contingent on these environmental factors. We assessed the effect of N deposition on herbaceous richness for 15,136 forest, woodland, shrubland, and grassland sites across the continental United States, to address how edaphic and climatic conditions altered vulnerability to this stressor. In our dataset, with N deposition ranging from 1 to 19 kg N⋅ha(-1)⋅y(-1), we found a unimodal relationship; richness increased at low deposition levels and decreased above 8.7 and 13.4 kg N⋅ha(-1)⋅y(-1) in open and closed-canopy vegetation, respectively. N deposition exceeded critical loads for loss of plant species richness in 24% of 15,136 sites examined nationwide. There were negative relationships between species richness and N deposition in 36% of 44 community gradients. Vulnerability to N deposition was consistently higher in more acidic soils whereas the moderating roles of temperature and precipitation varied across scales. We demonstrate here that negative relationships between N deposition and species richness are common, albeit not universal, and that fine-scale processes can moderate vegetation responses to N deposition. Our results highlight the importance of contingent factors when estimating ecosystem vulnerability to N deposition and suggest that N deposition is affecting species richness in forested and nonforested systems across much of the continental United States.


Assuntos
Atmosfera , Biodiversidade , Nitrogênio/análise , Plantas/classificação , Estados Unidos
8.
Front Microbiol ; 5: 681, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25566204

RESUMO

Extensive tree mortality from insect epidemics has raised concern over possible effects on soil biogeochemical processes. Yet despite the importance of microbes in nutrient cycling, how soil bacterial communities respond to insect-induced tree mortality is largely unknown. We examined soil bacterial community structure (via 16S rRNA gene pyrosequencing) and community assembly processes (via null deviation analysis) along a 5-year chronosequence (substituting space for time) of bark beetle-induced tree mortality in the southern Rocky Mountains, USA. We also measured microbial biomass and soil chemistry, and used in situ experiments to assess inorganic nitrogen mineralization rates. We found that bacterial community structure and assembly-which was strongly influenced by stochastic processes-were largely unaffected by tree mortality despite increased soil ammonium ([Formula: see text]) pools and reductions in soil nitrate ([Formula: see text]) pools and net nitrogen mineralization rates after tree mortality. Linear models suggested that microbial biomass and bacterial phylogenetic diversity are significantly correlated with nitrogen mineralization rates of this forested ecosystem. However, given the overall resistance of the bacterial community to disturbance from tree mortality, soil nitrogen processes likely remained relatively stable following tree mortality when considered at larger spatial and longer temporal scales-a supposition supported by the majority of available studies regarding biogeochemical effects of bark beetle infestations in this region. Our results suggest that soil bacterial community resistance to disturbance helps to explain the relatively weak effects of insect-induced tree mortality on soil N and C pools reported across the Rocky Mountains, USA.

9.
J Environ Manage ; 103: 165-71, 2012 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-22516810

RESUMO

We evaluated the ecological thresholds associated with vegetation and soil responses to nitrogen (N) deposition, by adding NH(4)NO(3) in solution at rates of 5, 10 and 30 kg N ha(-1) yr(-1) to plots in a species rich dry meadow alpine community in Rocky Mountain National Park receiving ambient N deposition of 4 kg N ha(-1) yr(-1). To determine the levels of N input that elicited changes, we measured plant species composition annually, and performed one-time measurements of aboveground biomass and N concentrations, soil solution and resin bag inorganic N, soil pH, and soil extractable cations after 3 years of N additions. Our goal was to use these dose-response relationships to provide N critical loads for vegetation and soils for the alpine in Rocky Mountain National Park. Species richness and diversity did not change in response to the treatments, but one indicator species, Carex rupestris increased in cover from 34 to 125% in response to the treatments. Using the rate of change in cover for C. rupestris in the treatment and the ambient plots, and assuming the change in cover was due solely to N deposition, we estimated a N critical load for vegetation at 3 kg N ha(-1) yr(-1). Inorganic N concentrations in soil solution increased above ambient levels at input rates between 9 kg N ha(-1) yr(-1) (resin bags) and 14 kg N ha(-1) yr(-1) (lysimeters), indicating biotic and abiotic sinks for N deposition are exhausted at these levels. No changes in soil pH or extractable cations occurred in the treatment plots, indicating acidification had not occurred after 3 years. We conclude that N critical loads under 10 kg ha(-1) yr(-1) are needed to prevent future acidification of soils and surface waters, and recommend N critical loads for vegetation at 3 kg N ha(-1) yr(-1) as important for protecting natural plant communities and ecosystem services in Rocky Mountain National Park.


Assuntos
Nitrogênio/análise , Ecossistema , Eutrofização , Recreação
10.
Porto Alegre; Artmed; 2011. xxiv,640 p. ilus, mapas, tab, graf.
Monografia em Português | LILACS | ID: lil-756847
11.
Ecology ; 91(11): 3252-60, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21141186

RESUMO

Niche complementarity, in which coexisting species use different forms of a resource, has been widely invoked to explain some of the most debated patterns in ecology, including maintenance of diversity and relationships between diversity and ecosystem function. However, classical models assume resource specialization in the form of distinct niches, which does not obviously apply to the broadly overlapping resource use in plant communities. Here we utilize an experimental framework based on competition theory to test whether plants partition resources via classical niche differentiation or via plasticity in resource use. We explore two alternatives: niche preemption, in which individuals respond to a superior competitor by switching to an alternative, less-used resource, and dominant plasticity, in which superior competitors exhibit high resource use plasticity and shift resource use depending on the competitive environment. We determined competitive ability by measuring growth responses with and without neighbors over a growing season and then used 15N tracer techniques to measure uptake of different nitrogen (N) forms in a field setting. We show that four alpine plant species of differing competitive abilities have statistically indistinguishable uptake patterns (nitrate > ammonium > glycine) in their fundamental niche (without competitors) but differ in whether they shift these uptake patterns in their realized niche (with competitors). Competitively superior species increased their uptake of the most available N form, ammonium, when in competition with the rarer, competitively inferior species. In contrast, the competitively inferior species did not alter its N uptake pattern in competition. The existence of plasticity in resource use among the dominant species provides a mechanism that helps to explain the manner by which plant species with broadly overlapping resource use might coexist.


Assuntos
Ecossistema , Nitrogênio/metabolismo , Plantas/metabolismo , Isótopos de Nitrogênio/metabolismo , Densidade Demográfica
12.
Proc Natl Acad Sci U S A ; 105(50): 19780-5, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19064910

RESUMO

Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.


Assuntos
Carbono/metabolismo , Poluição Ambiental , Nitrogênio/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Solo , Biodiversidade , Carbono/análise , Nitrogênio/análise , Plantas/classificação , Microbiologia do Solo , Poluentes do Solo/análise
13.
Environ Microbiol ; 10(11): 3093-105, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18764871

RESUMO

Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5 cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function.


Assuntos
Archaea/classificação , Bactérias/classificação , Biodiversidade , Carbono/metabolismo , Fertilizantes , Fungos/classificação , Nitrogênio/metabolismo , Microbiologia do Solo , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Dados de Sequência Molecular , Compostos Orgânicos/análise , Filogenia , Análise de Sequência de DNA , Solo/análise
14.
Oecologia ; 158(1): 95-107, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18704503

RESUMO

Phenolics can reduce soil nutrient availability, either indirectly by stimulating microbial nitrogen (N) immobilization or directly by enhancing physical protection within soil. Phenolic-rich plants may therefore negatively affect neighboring plant growth by restricting the N supply. We used a slow-growing, phenolic-rich alpine forb, Acomastylis rossii, to test the hypothesis that phenolic-rich carbon (C) fractions stimulate microbial population growth and reduce plant growth. We generated low-molecular-weight (LMW) fractions, tannin fractions, and total soluble C fractions from A. rossii and measured their effects on soil respiration and growth of Deschampsia caespitosa, a fast-growing, co-dominant grass. Fraction effects fell into two distinct categories: (1) fractions did not increase soil respiration and killed D. caespitosa plants, or (2) fractions stimulated soil respiration and reduced plant growth and plant N concentration while simultaneously inhibiting root growth. The LMW phenolic-rich fractions increased soil respiration and reduced plant growth more than tannins. These results suggest that phenolic compounds can inhibit root growth directly as well as indirectly affect growth by reducing pools of plant available N by stimulating soil microbes. Both mechanisms illustrate how below-ground phenolic effects may influence the growth of neighboring plants. We also examined patterns of foliar phenolic concentrations among populations of A. rossii across a natural productivity gradient (productivity was used as a proxy for competition intensity). Concentrations of some LMW phenolics increased significantly in more productive sites where A. rossii is a competitive equal with the faster growing D. caespitosa. Taken together, our results contribute important information to the growing body of evidence indicating that the quality of C moving from plants to soils can have significant effects on neighboring plant performance, potentially associated with phytoxic effects, and indirect effects on soil biogeochemistry.


Assuntos
Ecossistema , Fenóis/metabolismo , Poaceae/crescimento & desenvolvimento , Rosaceae/metabolismo , Microbiologia do Solo , Taninos/metabolismo , Respiração Celular , Colorado , Nitrogênio/metabolismo , Folhas de Planta/metabolismo
15.
Ecology ; 88(7): 1832-40, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17645029

RESUMO

The importance of interspecific competition as a cause of resource partitioning among species has been widely assumed but rarely tested. Using neighbor removals in combination with 15N tracer additions in the field, we examined variation among three alpine species in the uptake of 15N-NH4+, 15N-NO3-, and 15N-13C-[2]-glycine in intact neighborhoods, when paired with a specific neighbor, and when all neighbors were removed. Species varied in the capacity to take up 15N-labeled NH4+, NO3-, and glycine in intact neighborhoods and in interspecific pairs. When interspecific neighbor pairs were compared with no neighbor controls, neighbors reduced 15N uptake in target species by as much as 50%, indicating competition for N. Furthermore, neighbor identity influenced the capacity of species to take up different forms of N. Thus, competition within interspecific neighbor pairs often caused reduced uptake of a particular form of N, as well as shifts to uptake of an alternative form of N. Such shifts in resource use as a result of competition are an implicit assumption in studies of resource partitioning but have rarely been documented. Our study suggests that plasticity in the uptake of different forms of N may be a mechanism by which cooccurring plants reduce competition for N.


Assuntos
Artemisia/metabolismo , Carex (Planta)/metabolismo , Nitrogênio/metabolismo , Rosaceae/metabolismo , Ecossistema , Nitrogênio/química , Isótopos de Nitrogênio , Dinâmica Populacional
16.
Ecol Appl ; 16(3): 1183-93, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16827011

RESUMO

Increases in the deposition of anthropogenic nitrogen (N) have been linked to several terrestrial ecological changes, including soil biogeochemistry, plant stress susceptibility, and community diversity. Recognizing the need to identify sensitive indicators of biotic response to N deposition, we empirically estimated the N critical load for changes in alpine plant community composition and compared this with the estimated critical load for soil indicators of ecological change. We also measured the degree to which alpine vegetation may serve as a sink for anthropogenic N and how much plant sequestration is related to changes in species composition. We addressed these research goals by adding 20, 40, or 60 kg N x ha(-1) x yr(-1), along with an ambient control (6 kg N x ha(-1) x yr(-1) total deposition), to a species-rich alpine dry meadow for an eight-year period. Change in plant species composition associated with the treatments occurred within three years of the initiation of the experiment and were significant at all levels of N addition. Using individual species abundance changes and ordination scores, we estimated the N critical loads (total deposition) for (1) change in individual species to be 4 kg N x ha(-1) yr(-1) and (2) for overall community change to be 10 kg N x ha(-1) x yr(-1). In contrast, increases in NO3- leaching, soil solution inorganic NO3-, and net N nitrification occurred at levels above 20 kg N x ha(-1) x yr(-1). Increases in total aboveground biomass were modest and transient, occurring in only one of the three years measured. Vegetative uptake of N increased significantly, primarily as a result of increasing tissue N concentrations and biomass increases in subdominant species. Aboveground vegetative uptake of N accounted for <40% of the N added. The results of this experiment indicate that changes in vegetation composition will precede detectable changes in more traditionally used soil indicators of ecosystem responses to N deposition and that changes in species composition are probably ongoing in alpine dry meadows of the Front Range of the Colorado Rocky Mountains. Feedbacks to soil N cycling associated with changes in litter quality and species composition may result in only short-term increases in vegetation N pools.


Assuntos
Ecossistema , Nitrogênio/análise , Fenômenos Fisiológicos Vegetais
17.
Oecologia ; 149(1): 141-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16609872

RESUMO

Repercussions of species loss on ecosystem processes depend on the effects of the lost species as well as the compensatory responses of the remaining species in the community. We experimentally removed two co-dominant plant species and added a 15N tracer in alpine tundra to compare how species' functional differences influence community structure and N cycling. For both of the species, production compensated for the biomass removed by the second year. However, the responses of the remaining species depended on which species was removed. These differences in compensation influenced how species loss impacted ecosystem processes. After the removal of one of the co-dominant species, Acomastylis rossii, there were few changes in the relative abundance of the remaining species, and differences in functioning could be predicted based on effects associated with the removed species. In contrast, the removal of the other co-dominant, Deschampsia caespitosa, was associated with subsequent changes in community structure (species relative abundances and diversity) and impacts on ecosystem properties (microbial biomass N, dissolved organic N, and N uptake of subordinate species). Variation in compensation may contribute to the resulting effects on ecosystem functioning, with the potential to buffer or accelerate the effects of species loss.


Assuntos
Ecossistema , Poaceae/fisiologia , Rosaceae/fisiologia , Análise de Variância , Colorado , Isótopos de Nitrogênio/análise , Dinâmica Populacional , Especificidade da Espécie
18.
Trends Ecol Evol ; 20(11): 634-41, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16701447

RESUMO

Ecologists are becoming increasingly aware of the role of aboveground-belowground relationships in controlling ecosystem processes and properties. Here, we review recent studies that show that relationships between aboveground and belowground communities operate over a hierarchy of temporal scales, ranging from days to seasons, to millennia, with differing consequences for ecosystem structure and function. We propose that a temporal framework is crucial to our understanding of the nature and ecological significance of relationships between aboveground and belowground communities.

19.
Nature ; 419(6910): 915-7, 2002 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-12410307

RESUMO

Soils contain the largest near-surface reservoir of terrestrial carbon and so knowledge of the factors controlling soil carbon storage and turnover is essential for understanding the changing global carbon cycle. The influence of climate on decomposition of soil carbon has been well documented, but there remains considerable uncertainty in the potential response of soil carbon dynamics to the rapid global increase in reactive nitrogen (coming largely from agricultural fertilizers and fossil fuel combustion). Here, using 14C, 13C and compound-specific analyses of soil carbon from long-term nitrogen fertilization plots, we show that nitrogen additions significantly accelerate decomposition of light soil carbon fractions (with decadal turnover times) while further stabilizing soil carbon compounds in heavier, mineral-associated fractions (with multidecadal to century lifetimes). Despite these changes in the dynamics of different soil pools, we observed no significant changes in bulk soil carbon, highlighting a limitation inherent to the still widely used single-pool approach to investigating soil carbon responses to changing environmental conditions. It remains to be seen if the effects observed here-caused by relatively high, short-term fertilizer additions-are similar to those arising from lower, long-term additions of nitrogen to natural ecosystems from atmospheric deposition, but our results suggest nonetheless that current models of terrestrial carbon cycling do not contain the mechanisms needed to capture the complex relationship between nitrogen availability and soil carbon storage.


Assuntos
Carbono/metabolismo , Ecossistema , Nitrogênio/administração & dosagem , Solo/análise , Dióxido de Carbono/metabolismo , Colorado , Fertilizantes , Combustíveis Fósseis , Atividades Humanas
20.
Oecologia ; 130(4): 609-616, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28547264

RESUMO

In the N-limited alpine tundra, plants may utilize a diversity of N sources (organic and inorganic N) in order to meet their nutritional requirements. To characterize species-level differences in traits related to N acquisition, we analyzed foliar δ15N, nitrate reductase activity (NRA) and mycorrhizal infection in co-occurring alpine species during the first half of the growing season and compared these traits to patterns of N uptake using a 15N (15N-NH4+, 15N-NO3-) or 13C,15N ([1]-13C-15N-glycine) tracer addition in the greenhouse. 13C enrichment in belowground tissue indicated that all species were capable of taking up labeled glycine, although only one species showed uptake of glycine potentially exceeding that of inorganic N. Species showing the most depleted foliar δ15N and elevated NRA in the field also tended to show relatively high rates of NO3- uptake in the greenhouse. Likewise, species showing the most enriched foliar δ15N also showed high rates of NH4+ uptake. The ratio of NO3-:NH4+ uptake rates and growth rate explained 64% and 72% of the variance in foliar δ15N, respectively, suggesting that species differ in the ability to take up NO3- and NH4+ in the field and that such differences may enable species to partition soil N on the basis of N form.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...