Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(44)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33127682

RESUMO

The end-Cretaceous bolide impact triggered the devastation of marine ecosystems. However, the specific kill mechanism(s) are still debated, and how primary production subsequently recovered remains elusive. We used marine plankton microfossils and eco-evolutionary modeling to determine strategies for survival and recovery, finding that widespread phagotrophy (prey ingestion) was fundamental to plankton surviving the impact and also for the subsequent reestablishment of primary production. Ecological selectivity points to extreme post-impact light inhibition as the principal kill mechanism, with the marine food chain temporarily reset to a bacteria-dominated state. Subsequently, in a sunlit ocean inhabited by only rare survivor grazers but abundant small prey, it was mixotrophic nutrition (autotrophy and heterotrophy) and increasing cell sizes that enabled the eventual reestablishment of marine food webs some 2 million years later.

2.
Science ; 367(6475): 266-272, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31949074

RESUMO

The cause of the end-Cretaceous mass extinction is vigorously debated, owing to the occurrence of a very large bolide impact and flood basalt volcanism near the boundary. Disentangling their relative importance is complicated by uncertainty regarding kill mechanisms and the relative timing of volcanogenic outgassing, impact, and extinction. We used carbon cycle modeling and paleotemperature records to constrain the timing of volcanogenic outgassing. We found support for major outgassing beginning and ending distinctly before the impact, with only the impact coinciding with mass extinction and biologically amplified carbon cycle change. Our models show that these extinction-related carbon cycle changes would have allowed the ocean to absorb massive amounts of carbon dioxide, thus limiting the global warming otherwise expected from postextinction volcanism.


Assuntos
Ciclo do Carbono , Extinção Biológica , Erupções Vulcânicas , Dióxido de Carbono/análise , Aquecimento Global , México , Modelos Teóricos
3.
Nature ; 574(7777): 242-245, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31554971

RESUMO

The Chicxulub bolide impact 66 million years ago drove the near-instantaneous collapse of ocean ecosystems. The devastating loss of diversity at the base of ocean food webs probably triggered cascading extinctions across all trophic levels1-3 and caused severe disruption of the biogeochemical functions of the ocean, and especially disrupted the cycling of carbon between the surface and deep sea4,5. The absence of sufficiently detailed biotic data that span the post-extinction interval has limited our understanding of how ecosystem resilience and biochemical function was restored; estimates6-8 of ecosystem 'recovery' vary from less than 100 years to 10 million years. Here, using a 13-million-year-long nannoplankton time series, we show that post-extinction communities exhibited 1.8 million years of exceptional volatility before a more stable equilibrium-state community emerged that displayed hallmarks of resilience. The transition to this new equilibrium-state community with a broader spectrum of cell sizes coincides with indicators of carbon-cycle restoration and a fully functioning biological pump9. These findings suggest a fundamental link between ecosystem recovery and biogeochemical cycling over timescales that are longer than those suggested by proxies of export production7,8, but far shorter than the return of taxonomic richness6. The fact that species richness remained low as both community stability and biological pump efficiency re-emerged suggests that ecological functions rather than the number of species are more important to community resilience and biochemical functions.


Assuntos
Aclimatação , Biodiversidade , Ecossistema , Extinção Biológica , Animais , Isótopos de Carbono/análise , Cadeia Alimentar , Fósseis , História Antiga , Plâncton/classificação , Plâncton/isolamento & purificação
4.
Philos Trans A Math Phys Eng Sci ; 376(2130)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30177560

RESUMO

Past global warming events such as the Palaeocene-Eocene Thermal Maximum (PETM-56 Ma) are attributed to the release of vast amounts of carbon into the ocean, atmosphere and biosphere with recovery ascribed to a combination of silicate weathering and organic carbon burial. The phytoplanktonic nannoplankton are major contributors of organic and inorganic carbon but their role in this recovery process remains poorly understood and complicated by their contribution to marine calcification. Biocalcification is implicated not only in long-term carbon burial but also both short-term positive and negative climatic feedbacks associated with seawater buffering and responses to ocean acidification. Here, we use exceptional records of preserved fossil coccospheres to reconstruct cell size distribution, biomass production (particulate organic carbon, POC) and (particulate) inorganic carbon (PIC) yields of three contrasting nannoplankton communities (Bass River-outer shelf, Maud Rise-uppermost bathyal, Shatsky Rise-open ocean) through the PETM onset and recovery. Each of the sites shows contrasting community responses across the PETM as a function of their taxic composition and total community biomass. Our results indicate that nannoplankton PIC:POC had no role in short-term climate feedback and, as such, their importance as a source of CO2 to the environment is a red herring. It is nevertheless likely that shifts to greater numbers of smaller cells at the shelf site in particular led to greater carbon transfer efficiency, and that nannoplankton productivity and export across the shelves had a significant modulating effect on carbon sequestration during the PETM recovery.This article is part of a discussion meeting issue 'Hyperthermals: rapid and extreme global warming in our geological past'.


Assuntos
Calcificação Fisiológica , Fenômenos Geológicos , Plâncton/fisiologia , Temperatura , Biomassa , Mudança Climática , Planeta Terra , Fósseis , Nutrientes/metabolismo , Plâncton/metabolismo
5.
Paleoceanogr Paleoclimatol ; 33(5): 511-529, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-31058259

RESUMO

Pelagic sediments from the subtropical South Atlantic Ocean contain geographically extensive Oligocene ooze and chalk layers that consist almost entirely of the calcareous nannofossil Braarudosphaera. Poor recovery and the lack of precise dating of these horizons in previous studies has limited the understanding of the number of acmes, their timing and durations, and therefore their likely cause. Here we present a high-resolution, astronomically tuned stratigraphy of Braarudosphaera oozes (29.5-27.9 Ma) from Ocean Drilling Program Site 1264 in the southeastern Atlantic Ocean. We identify seven episodes with highly abundant Braarudosphaera. Four of these acme events coincide with maxima and three with minima in the ~110 and 405-kyr paced eccentricity cycles. The longest lasting acme event corresponds to a pronounced minimum in the ~2.4-Myr eccentricity cycle. In the modern ocean, Braarudosphaera occurrences are limited to shallow marine and neritic settings, and the calcified coccospheres of Braarudosphaera are probably produced during a resting stage in the algal life cycle. Therefore, we hypothesize that the Oligocene acmes point to extensive and episodic (hyper) stratified surface water conditions, with a shallow pycnocline that may have served as a virtual seafloor and (partially/temporarily) prevented the coccospheres from sinking in the pelagic realm. We speculate that hyperstratification was either extended across large areas of the South Atlantic basin, through the formation of relatively hyposaline surface waters, or eddy contained through strong isopycnals at the base of eddies. Astronomical forcing of atmospheric and/or oceanic circulation could have triggered these conditions through either sustained rainfall over the open ocean and adjacent land masses or increased Agulhas Leakage.

6.
Nat Commun ; 5: 5363, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25399967

RESUMO

Anthropogenic carbon dioxide emissions are forcing rapid ocean chemistry changes and causing ocean acidification (OA), which is of particular significance for calcifying organisms, including planktonic coccolithophores. Detailed analysis of coccolithophore skeletons enables comparison of calcite production in modern and fossil cells in order to investigate biomineralization response of ancient coccolithophores to climate change. Here we show that the two dominant coccolithophore taxa across the Paleocene-Eocene Thermal Maximum (PETM) OA global warming event (~56 million years ago) exhibited morphological response to environmental change and both showed reduced calcification rates. However, only Coccolithus pelagicus exhibits a transient thinning of coccoliths, immediately before the PETM, that may have been OA-induced. Changing coccolith thickness may affect calcite production more significantly in the dominant modern species Emiliania huxleyi, but, overall, these PETM records indicate that the environmental factors that govern taxonomic composition and growth rate will most strongly influence coccolithophore calcification response to anthropogenic change.


Assuntos
Calcificação Fisiológica , Mudança Climática , Haptófitas/metabolismo , Oceanos e Mares , Plâncton/metabolismo , Ciclo do Carbono , Fósseis , Concentração de Íons de Hidrogênio
7.
Nat Commun ; 5: 4194, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24937202

RESUMO

The Late Cretaceous 'greenhouse' world witnessed a transition from one of the warmest climates of the past 140 million years to cooler conditions, yet still without significant continental ice. Low-latitude sea surface temperature (SST) records are a vital piece of evidence required to unravel the cause of Late Cretaceous cooling, but high-quality data remain illusive. Here, using an organic geochemical palaeothermometer (TEX86), we present a record of SSTs for the Campanian-Maastrichtian interval (~83-66 Ma) from hemipelagic sediments deposited on the western North Atlantic shelf. Our record reveals that the North Atlantic at 35 °N was relatively warm in the earliest Campanian, with maximum SSTs of ~35 °C, but experienced significant cooling (~7 °C) after this to <~28 °C during the Maastrichtian. The overall stratigraphic trend is remarkably similar to records of high-latitude SSTs and bottom-water temperatures, suggesting that the cooling pattern was global rather than regional and, therefore, driven predominantly by declining atmospheric pCO2 levels.

8.
Science ; 332(6026): 175; author reply 175, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21474738

RESUMO

Erba et al. (Reports, 23 July 2010, p. 428) attributed calcareous nannofossil morphology and assemblage changes across Cretaceous Oceanic Anoxic Event 1a to the effects of surface ocean acidification. We argue that the quality of carbonate preservation in these sequences, the unsupported assumptions of the biotic response to acidity, and the absence of independent proxy estimates for ocean pH or atmospheric pCO(2) render this conclusion questionable.


Assuntos
Calcificação Fisiológica , Carbonato de Cálcio/química , Ecossistema , Fósseis , Plâncton , Água do Mar/química , Adaptação Fisiológica , Atmosfera , Carbonato de Cálcio/análise , Dióxido de Carbono , Sedimentos Geológicos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Oxigênio , Plâncton/citologia , Plâncton/fisiologia , Tempo
9.
Philos Trans A Math Phys Eng Sci ; 369(1938): 1036-55, 2011 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-21282159

RESUMO

The Anthropocene, an informal term used to signal the impact of collective human activity on biological, physical and chemical processes on the Earth system, is assessed using stratigraphic criteria. It is complex in time, space and process, and may be considered in terms of the scale, relative timing, duration and novelty of its various phenomena. The lithostratigraphic signal includes both direct components, such as urban constructions and man-made deposits, and indirect ones, such as sediment flux changes. Already widespread, these are producing a significant 'event layer', locally with considerable long-term preservation potential. Chemostratigraphic signals include new organic compounds, but are likely to be dominated by the effects of CO(2) release, particularly via acidification in the marine realm, and man-made radionuclides. The sequence stratigraphic signal is negligible to date, but may become geologically significant over centennial/millennial time scales. The rapidly growing biostratigraphic signal includes geologically novel aspects (the scale of globally transferred species) and geologically will have permanent effects.


Assuntos
Ecossistema , Animais , Biodiversidade , Mudança Climática/história , Extinção Biológica , Fósseis , Sedimentos Geológicos/química , Fenômenos Geológicos , História Antiga , Humanos , Espécies Introduzidas/história , Fatores de Tempo
10.
Science ; 327(5970): 1214-8, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20203042

RESUMO

The Cretaceous-Paleogene boundary approximately 65.5 million years ago marks one of the three largest mass extinctions in the past 500 million years. The extinction event coincided with a large asteroid impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in India. Here, we synthesize records of the global stratigraphy across this boundary to assess the proposed causes of the mass extinction. Notably, a single ejecta-rich deposit compositionally linked to the Chicxulub impact is globally distributed at the Cretaceous-Paleogene boundary. The temporal match between the ejecta layer and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling) lead us to conclude that the Chicxulub impact triggered the mass extinction.


Assuntos
Extinção Biológica , Fósseis , Planetas Menores , Animais , Sedimentos Geológicos , México
11.
Science ; 314(5806): 1770-3, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17170303

RESUMO

The Paleocene-Eocene Thermal Maximum (PETM, approximately 55 million years ago) was an interval of global warming and ocean acidification attributed to rapid release and oxidation of buried carbon. We show that the onset of the PETM coincided with a prominent increase in the origination and extinction of calcareous phytoplankton. Yet major perturbation of the surface-water saturation state across the PETM was not detrimental to the survival of most calcareous nannoplankton taxa and did not impart a calcification or ecological bias to the pattern of evolutionary turnover. Instead, the rate of environmental change appears to have driven turnover, preferentially affecting rare taxa living close to their viable limits.


Assuntos
Ecossistema , Extinção Biológica , Fósseis , Fitoplâncton , Plâncton , Atmosfera , Biodiversidade , Evolução Biológica , Calcificação Fisiológica , Dióxido de Carbono , Meio Ambiente , Sedimentos Geológicos , New Jersey , Oceanos e Mares , Oceano Pacífico , Fitoplâncton/classificação , Plâncton/classificação , Rios , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...