Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 119(3): 771-785, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093172

RESUMO

Neurons in the rostral nucleus of the solitary tract (rNST) convey taste information to both local circuits and pathways destined for forebrain structures. This nucleus is more than a simple relay, however, because rNST neurons differ in response rates and tuning curves relative to primary afferent fibers. To systematically study the impact of convergence and inhibition on firing frequency and breadth of tuning (BOT) in rNST, we constructed a mathematical model of its two major cell types: projection neurons and inhibitory neurons. First, we fit a conductance-based neuronal model to data derived from whole cell patch-clamp recordings of inhibitory and noninhibitory neurons in a mouse expressing Venus under the control of the VGAT promoter. We then used in vivo chorda tympani (CT) taste responses as afferent input to modeled neurons and assessed how the degree and type of convergence influenced model cell output frequency and BOT for comparison with in vivo gustatory responses from the rNST. Finally, we assessed how presynaptic and postsynaptic inhibition impacted model cell output. The results of our simulations demonstrated 1) increasing numbers of convergent afferents (2-10) result in a proportional increase in best-stimulus firing frequency but only a modest increase in BOT, 2) convergence of afferent input selected from the same best-stimulus class of CT afferents produced a better fit to real data from the rNST compared with convergence of randomly selected afferent input, and 3) inhibition narrowed the BOT to more realistically model the in vivo rNST data. NEW & NOTEWORTHY Using a combination of in vivo and in vitro neurophysiology together with conductance-based modeling, we show how patterns of convergence and inhibition interact in the rostral (gustatory) solitary nucleus to maintain signal fidelity. Although increasing convergence led to a systematic increase in firing frequency, tuning specificity was maintained with a pattern of afferent inputs sharing the best-stimulus compared with random inputs. Tonic inhibition further enhanced response fidelity.


Assuntos
Potenciais de Ação , Modelos Neurológicos , Neurônios/fisiologia , Núcleo Solitário/fisiologia , Vias Aferentes/fisiologia , Animais , Nervo da Corda do Tímpano/fisiologia , Neurônios GABAérgicos/fisiologia , Camundongos Transgênicos , Vias Neurais/fisiologia , Paladar/fisiologia
2.
J Neurophysiol ; 109(11): 2815-26, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23486207

RESUMO

Taste processing in the rostral nucleus of the solitary tract (rNST) is subject to modulatory influences including opioid peptides. Behavioral pharmacological studies suggest an influence of µ-opioid receptors in rNST, but the underlying mechanism is unknown. To determine the cellular site of action, we tested the effects of the µ-opioid receptor agonist DAMGO in vitro. Whole cell patch-clamp recordings were made in brain stem slices from GAD67-GFP knockin mice expressing enhanced green fluorescent protein (EGFP) under the control of the endogenous promoter for GAD67, a synthetic enzyme for GABA. Neuron counts showed that ∼36% of rNST neurons express GABA. We recorded monosynaptic solitary tract (ST)-evoked currents (jitter ≤ 300 µs) in both GAD67-EGFP-positive (GAD67+) and GAD67-EGFP-negative (GAD67-) neurons with equal frequency (25/31; 22/28), but the inputs to the GAD67+ neurons had significantly smaller paired-pulse ratios compared with GAD67- neurons. DAMGO (0.3 µM) significantly suppressed ST-evoked currents in both cell types (mean suppression = 46 ± 3.3% SE), significantly increased the paired-pulse ratio of these currents, and reduced the frequency of spontaneous miniature excitatory postsynaptic currents but did not diminish their amplitude, indicating a presynaptic site of action. Under inhibitory amino acid receptor blockade, DAMGO was significantly more suppressive in GAD67+ neurons (59% reduction) compared with GAD67- neurons (35% reduction), while the reverse was true in normal artificial cerebrospinal fluid (GAD67+: 35% reduction; GAD67-: 57% reduction). These findings suggest that DAMGO suppresses activity in rNST neurons predominantly via a presynaptic mechanism, and that this effect may interact significantly with tonic or evoked inhibitory activity.


Assuntos
Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Potenciais Evocados , Neurônios GABAérgicos/efeitos dos fármacos , Inibição Neural , Neurotransmissores/farmacologia , Receptores Opioides mu/agonistas , Núcleo Solitário/fisiologia , Animais , Neurônios GABAérgicos/fisiologia , Camundongos , Potenciais Pós-Sinápticos em Miniatura , Núcleo Solitário/citologia , Núcleo Solitário/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...