Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 243: 116074, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437785

RESUMO

Rapid diagnosis of diseases is one of the challenging areas in clinical research. From the analytical chemist's perspective, the main challenges are isolating the compounds from the bio-specimen and lengthy analysis times. In this regard, solid phase microextraction offers a platform to address the abovementioned challenges. Moreover, its sharp tip-thin film geometry, known as coated blade spray (CBS), can enhance the extraction and act as an ionization source in direct mass spectrometric analysis. In this study, a new CBS device specifically designed for polar analytes was prepared and optimized to determine urinary metabolites. For this purpose, polyacrylonitrile (PAN) was selected as a base polymer as it can be electrospun to form a nanofibrous structure, and it can be modified with weak ion exchange moieties to interact with polar analytes. Following the electrospinning of PAN, hydrolysis was optimized, and conditions leading to sufficient extraction enhancement without dissolving the polymer were obtained when probes were treated with 5.0 M of NaOH for 2.5 h. Using the coated blades prepared as explained, the evaluation of various extraction conditions showed that 5 min is sufficient for equilibrium extraction. In addition, the solution's ionic strength and pH significantly affect the extraction. Optimum sorption was obtained at no salt added and pH 7.0 conditions. The CBS-MS optimization showed that 10.0 µL of ACN/MeOH/H2O (40:40:20, v/v/v) with formic acid kept for 15 seconds on the blade before voltage application leads to the highest signal. The limits of quantification of the analytes are between 50 and 100 ng/mL.


Assuntos
Microextração em Fase Sólida , Espectrometria de Massas , Microextração em Fase Sólida/métodos
2.
Turk J Chem ; 46(6): 1853-1865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37621358

RESUMO

Ketoprofen (KET) is an active pharmaceutical compound that has pain relieving and antipyretic effects. Its determination in body fluids and environmental waters is important due to widespread use of the compound. In this study, a selective and reliable method has been developed for the determination of ketoprofen in water and artificial serum using molecularly imprinted polymers (MIPs) as a solid phase extraction sorbent prior to HPLC-DAD detection. The MIP was synthesized by copolymerization of methacrylic acid (MAA) and trimethylpropane trimethacrylate (TRIM) in the presence of ketoprofen as the template. For the sake of comparison, nonimprinted polymer (NIP) was also synthesized under the same experimental conditions without the addition of ketoprofen under the same experimental conditions. Critical extraction parameters such as sample pH, shaking time and sorbent amount were optimized and adjusted to 8.0, 24 h, and 10.0 mg, respectively, for a sample volume of 10.0 mL. MIP showed higher selectivity than NIP towards ketoprofen in an artificial matrix containing another pain relieving drug, ibuprofen, and a cardiovascular drug, metoprolol. The proposed method was successfully applied for the detection of ketoprofen in spiked drinking water, tap water, and artificial serum samples, and showed satisfactory results with respective recoveries of 96.8 % (± 0.8), 93.7% (± 0.6), 62.2% (± 0.6), and 69.9% (± 0.6).

3.
J Chromatogr A ; 1638: 461862, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33433374

RESUMO

This work presents an evaluation of solid-phase microextraction (SPME) SPME in combination with liquid chromatography-high resolution mass spectrometry (LC-HRMS) as an analytical approach for untargeted brain analysis. The study included a characterization of the metabolite coverage provided by C18, mixed-mode (MM, with benzene sulfonic acid and C18 functionalities), and hydrophilic lipophilic balanced (HLB) particles as sorbents in SPME coatings after extraction from cow brain homogenate at static conditions. The effects of desorption solvent, extraction time, and chromatographic modes on the metabolite features detected were investigated. Method precision and absolute matrix effects were also assessed. Among the main findings of this work, it was observed that all three tested coating chemistries were able to provide comparable brain tissue information. HLB provided higher responses for polar metabolites; however, as these fibers were prepared in-house, higher inter-fiber relative standard deviations were also observed. C18 and HLB coatings offered similar responses with respect to lipid-related features, whereas MM and C18 provided the best results in terms of method precision. Our results also showed that the use of methanol is essential for effective desorption of non-polar metabolites. Using a reversed-phase chromatographic method, an average of 800 and 1200 brain metabolite features detected in positive and negative modes, respectively, met inter-fibre RSD values below 30% (n=4) after removal of fibre and solvent artefacts from the associated datasets. For features detected using a lipidomics method, a total of 900 and 1800 features detected using C18 fibers in positive and negative mode, respectively, met the same criteria. In terms of absolute matrix effects, the majority of the model metabolites tested showed values between 80 and 120%, which are within the acceptable range. Overall, the findings of this work lay the foundation for further optimization of parameters for SPME-LC-HRMS methods suitable for in vivo and ex vivo brain (and other tissue) untargeted studies, and support the applicability of this approach for non-destructive tissue metabolomics.


Assuntos
Encéfalo/metabolismo , Cromatografia Líquida , Espectrometria de Massas , Microextração em Fase Sólida , Animais , Bovinos , Interações Hidrofóbicas e Hidrofílicas , Metabolômica/métodos , Solventes/química , Manejo de Espécimes
4.
Can J Anaesth ; 68(6): 761-772, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33403543

RESUMO

PURPOSE: Malignant hyperthermia (MH) is a potentially fatal hypermetabolic condition triggered by certain anesthetics and caused by defective calcium homeostasis in skeletal muscle cells. Recent evidence has revealed impairment of various biochemical pathways in MH-susceptible patients in the absence of anesthetics. We hypothesized that clinical differences between MH-susceptible and control individuals are reflected in measurable differences in myoplasmic metabolites. METHODS: We performed metabolomic profiling of skeletal muscle samples from MH-negative (control) individuals and MH-susceptible patients undergoing muscle biopsy for diagnosis of MH susceptibility. Cellular metabolites were extracted from 33 fresh and 87 frozen human muscle samples using solid phase microextraction and Metabolon® untargeted biochemical profiling platforms, respectively. Ultra-performance liquid chromatography-high resolution mass spectrometry was used for metabolite identification and validation, followed by analysis of differences in metabolites between the MH-susceptible and MH-negative groups. RESULTS: Significant fold-change differences between the MH-susceptible and control groups in metabolites from various pathways were found (P value range: 0.009 to < 0.001). These included accumulation of long chain acylcarnitines, diacylglycerols, phosphoenolpyruvate, histidine pathway metabolites, lysophosphatidylcholine, oxidative stress markers, and phosphoinositols, as well as decreased levels of monoacylglycerols. The results from both analytical platforms were in agreement. CONCLUSION: This metabolomics study indicates a shift from utilization of carbohydrates towards lipids for energy production in MH-susceptible individuals. This shift may result in inefficiency of beta-oxidation, and increased muscle protein turnover, oxidative stress, and/or lysophosphatidylcholine levels.


RéSUMé: OBJECTIF : L'hyperthermie maligne (HM) est une condition hypermétabolique potentiellement mortelle déclenchée par certains agents anesthésiques et causée par une homéostasie calcique perturbée des cellules musculaires squelettiques. Des données probantes récentes ont mis en lumière une atteinte de diverses voies biochimiques chez les patients susceptibles à l'HM en l'absence d'anesthésiques. Nous avons émis l'hypothèse que les différences cliniques entre les individus susceptibles à l'HM et des témoins se refléteraient dans des différences mesurables de métabolites myoplasmiques. MéTHODE : Nous avons réalisé un profilage métabolomique d'échantillons de muscles squelettiques provenant de personnes négatives à l'HM (témoins) et de patients susceptibles à l'HM subissant une biopsie musculaire dans le but de poser un diagnostic de susceptibilité à l'HM. Les métabolites cellulaires ont été extraits de 33 échantillons de muscles humains frais et de 87 échantillons congelés à l'aide d'une microextraction en phase solide et des plateformes de profilage biochimique non ciblées Metabolon®, respectivement. La chromatographie en phase liquide à haute performance et la spectrométrie de masse à haute résolution ont été utilisées pour l'identification et la validation des métabolites, puis suivies d'une analyse des différences dans les métabolites entre les groupes susceptibles à l'HM et les groupes négatifs à l'HM. RéSULTATS : Des différences significatives ont été observées entre les groupes susceptibles à l'HM et les groupes témoins dans les métabolites issus de diverses voies (P : de 0,009 à < 0,001). Ces différences comprenaient l'accumulation d'acylcarnitines à longue chaîne, de diacylglycérols, de phosphoénolpyruvate, de métabolites de la voie d'histidine, de lysophosphatidylcholine, de marqueurs de stress oxydatif, et de phosphoinositols, aussi bien que des taux réduits de monoacylglycérols. Les résultats des deux plateformes analytiques concordaient. CONCLUSION : Cette étude métabolomique indique un changement de l'utilisation des glucides vers les lipides pour la production d'énergie chez les personnes susceptibles à l'HM. Ce changement pourrait entraîner une inefficacité de la bêta-oxydation, ainsi qu'une augmentation du renouvellement des protéines musculaires, du stress oxydatif, et/ou des taux de lysophosphatidylcholine.


Assuntos
Halotano , Hipertermia Maligna , Humanos , Hipertermia , Metabolômica , Músculo Esquelético
5.
ACS Chem Neurosci ; 11(22): 3749-3760, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33125227

RESUMO

Fluoxetine is among the most prescribed antidepressant drugs worldwide. Nevertheless, limited information is known about its definitive mechanism. Although in vivo examinations performed directly in related brain structures can provide more realistic, and therefore more insightful, knowledge regarding the mechanisms and efficacy of this drug, only a few techniques are applicable for in vivo monitoring of metabolic alterations in the brain following an inducement. Among them, solid phase microextraction (SPME) and microdialysis (MD) have emerged as ideal in vivo tools for extraction of information from biosystems. In this investigation, we scrutinized the capabilities of SPME and MD to detect ongoing changes in the brain following acute fluoxetine administration. Sequential in vivo samples were collected simultaneously from male rats' hippocampi using SPME and MD before drug administration in order to establish a baseline; then samples were collected again following fluoxetine administration for an investigation of small molecule alterations. Our results indicate that MD provides more comprehensive information for polar compounds, while SPME provides superior information with respect to lipids and other medium level polar molecules. Interestingly, in the lipidomic investigation, all dysregulated features were found to be membrane lipids and associated compounds. Moreover, in the metabolomic investigations, dysregulation of hippocampal metabolite levels associated with fatty acid transportation and purine metabolisms were among the most notable findings. Overall, our evaluation of the obtained data corroborates that, when used in tandem, SPME and MD are capable of providing comprehensive information regarding the effect of fluoxetine in targeted brain structures and further elucidating this drug's mechanisms of action in the brain.


Assuntos
Fluoxetina , Microextração em Fase Sólida , Animais , Encéfalo , Fluoxetina/farmacologia , Hipocampo , Masculino , Microdiálise , Ratos
6.
ACS Chem Neurosci ; 11(12): 1827-1840, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32407623

RESUMO

Analysis of brain samples obtained postmortem remains a standard approach in neuroscience, despite often being suboptimal for inferring roles of small molecules in the pathophysiology of brain diseases. Sample collection and preservation further hinders conclusive interpretation of biomarker analysis in autopsy samples. We investigate purely death-induced changes affecting rat hippocampus in the first hour of postmortem interval (PMI) by means of untargeted liquid chromatography-mass spectrometry-based metabolomics. The unique possibility of sampling the same brain area of each animal both in vivo and postmortem was enabled by employing solid phase microextraction (SPME) probes. Four millimeter probes coated with mixed mode extraction phase were used to sample awake, freely roaming animals, with 2 more sampling events performed after death. Significant changes in brain neurochemistry were found to occur as soon as 30 min after death, further progressing with increasing PMI, evidenced by relative changes in levels of metabolites and lipids. These included species from several distinct groups, which can be classified as engaged in energy metabolism-related processes, signal transduction, neurotransmission, or inflammatory response. Additionally, we perform thorough analysis of interindividual variability in response to death, which provides insights into how this aspect can obscure conclusions drawn from an untargeted study at single metabolite and pathway level. The results suggest high demand for systematic studies examining the PMI time course with in vivo sampling as a starting point to eliminate artifacts in the form of neurochemical changes assumed to occur in vivo.


Assuntos
Metabolômica , Microextração em Fase Sólida , Animais , Encéfalo , Cromatografia Líquida , Espectrometria de Massas , Ratos
7.
J Sep Sci ; 43(9-10): 1925-1933, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32118350

RESUMO

Recently the connection between oxidative stress and various diseases, including cancer and Alzheimer's, attracts notice as a pathway suitable for diagnostic purposes. 8-Oxo-deoxyguanosine and 8-oxo-deoxyadenosine produced from the interaction of reactive oxygen species with DNA become prominent as biomarkers. Several methods have been developed for their determination in biofluids, including solid-phase extraction and enzyme-linked immunosorbent assays. However, still, there is a need for reliable and fast analytical methods. In this context, solid-phase microextraction offers many advantages such as flexibility in geometry and applicable sample volume, as well as high adaptability to high-throughput sampling. In this study, a solid-phase microextraction method was developed for the determination of 8-oxo-deoxyguanosine and 8-oxo-deoxyadenosine in biofluids. The extractive phase of solid-phase microextraction consisted of hydrophilic-lipophilic balanced polymeric particles. In order to develop a solid-phase microextraction method suitable for the determination of the analytes in saliva and urine, several parameters, including desorption solvent, desorption time, sample pH, and ionic strength, were scrutinized. Analytical figures of merit indicated that the developed method provides reasonable interday and intraday precisions (<15% in both biofluids) with acceptable accuracy. The method provides a limit of quantification for both biomarkers at 5.0 and 10.0 ng/mL levels in saliva and urine matrices, respectively.


Assuntos
8-Hidroxi-2'-Desoxiguanosina/análise , Líquidos Corporais/química , Desoxiadenosinas/análise , Microextração em Fase Sólida , Biomarcadores/análise , Cromatografia Líquida de Alta Pressão , Voluntários Saudáveis , Humanos , Estresse Oxidativo , Espectrometria de Massas em Tandem
8.
J Neurophysiol ; 122(4): 1649-1660, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31433731

RESUMO

Different neuromodulators rarely act independent from each other to modify neural processes but are instead coreleased, gated, or modulated. To understand this interdependence of neuromodulators and their collective influence on local circuits during different brain states, it is necessary to reliably extract local concentrations of multiple neuromodulators in vivo. Here we describe results using solid-phase microextraction (SPME), a method providing sensitive, multineuromodulator measurements. SPME is a sampling method that is coupled with mass spectrometry to quantify collected analytes. Reliable measurements of glutamate, dopamine, acetylcholine, and choline were made simultaneously within frontal cortex and striatum of two macaque monkeys (Macaca mulatta) during goal-directed behavior. We find glutamate concentrations several orders of magnitude higher than acetylcholine and dopamine in all brain regions. Dopamine was reliably detected in the striatum at tenfold higher concentrations than acetylcholine. Acetylcholine and choline concentrations were detected with high consistency across brain areas within monkeys and between monkeys. These findings illustrate that SPME microprobes provide a versatile novel tool to characterize multiple neuromodulators across different brain areas in vivo to understand the interdependence and covariation of neuromodulators during goal-directed behavior. Such data would be important to better distinguish between different behavioral states and characterize dysfunctional brain states that may be evident in psychiatric disorders.NEW & NOTEWORTHY Our paper reports a reliable and sensitive novel method for measuring the absolute concentrations of glutamate, acetylcholine, choline, dopamine, and serotonin in brain circuits in vivo. We show that this method reliably samples multiple neurochemicals in three brain areas simultaneously while nonhuman primates are engaged in goal-directed behavior. We further describe how the methodology we describe here may be used by electrophysiologists as a low-barrier-to-entry tool for measuring multiple neurochemicals.


Assuntos
Corpo Estriado/metabolismo , Lobo Frontal/metabolismo , Espectrometria de Massas/métodos , Neurotransmissores/metabolismo , Microextração em Fase Sólida/métodos , Animais , Corpo Estriado/fisiologia , Lobo Frontal/fisiologia , Macaca mulatta , Masculino , Espectrometria de Massas/instrumentação , Microextração em Fase Sólida/instrumentação , Vigília
9.
Anal Chem ; 91(15): 9875-9884, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31265251

RESUMO

Brain metabolomics is an emerging field that complements the more traditional approaches of neuroscience. However, typical brain metabolomics workflows require that animals be sacrificed and tend to involve tedious sample preparation steps. Microdialysis, the standard technique to study brain metabolites in vivo, is encumbered by significant limitations in the analysis of hydrophobic metabolites, which are prone to adsorption losses on microdialysis equipment. An alternative sampling method suitable for in vivo brain studies is solid-phase microextraction (SPME). In SPME, a small probe coated with a biocompatible polymer is employed to extract/enrich analytes from biological matrices. In this work, we report the use of SPME and liquid chromatography-mass spectrometry for untargeted in vivo analysis of rodent's brains after deep brain stimulation (DBS). First, metabolite changes occurring in brain hippocampi after application of 3 h of DBS to the animals' prefrontal cortex were monitored with the proposed approach. As SPME allows for nonlethal sampling, the same group of animals was sampled again after 8 days of daily DBS therapy. After acute DBS, we detected changes in a broad range of metabolites, including the amino acid citrulline, which may reflect changes in nitric oxide production, as well as various phospho- and glycosphingolipids. Measurements conducted after chronic DBS showed a decrease in hippocampal corticosterone, indicating that DBS may have a regulatory effect in the hypothalamic-pituitary-adrenal axis. Our findings demonstrate the potential of in vivo SPME as a tool of scientific and clinical interest capable of revealing changes in a wide range of metabolites in brain tissue.


Assuntos
Encéfalo/metabolismo , Estimulação Encefálica Profunda , Metabolômica/métodos , Microextração em Fase Sólida/métodos , Animais , Hipocampo/metabolismo , Masculino , Ratos
10.
Anal Chem ; 91(15): 10141-10148, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31251031

RESUMO

It is hard to overstate the tremendous utility of desorption electrospray ionization (DESI) and its various configurations for rapid and high-throughput analyses or spatially resolved imaging of heterogeneous systems. However, there have been few attempts to employ this technique in spatially resolved mode with solid substrates featuring extractive and analyte-enrichment properties. This study documents the development of a platform that combines solid-phase microextraction (SPME) with desorption electrospray ionization mass spectrometry (DESI-MS) for unidimensional investigation of the heterogeneous distribution of compounds in semisolid systems (i.e., depth profiling across the fiber axis), with the ultimate end of employing it for brain tissue analysis. To this end, a DESI interface and a custom holder accommodating SPME probes were built in house, with the latter contributing to reduction of mechanical sources of signal instability. The system was evaluated through the quantitative reconstruction of the laminar and radial concentration gradients of xenobiotics introduced in multilayer gel arrangements and surrogate brain tissue models. Good quantitative capability was achieved by employing a strategy that combined signal correction via preloading internal standard onto SPME fibers and signal integration in scan-by-scan mode. The proposed technique's suitability for characterizing more complex systems, such as rat brains ex vivo, was also evaluated. The proposed approach allows for fast and noninvasive probing of three-dimensional objects without the need for their slicing, and the space-resolved mode reduces the number of required probe insertions, allowing in vivo applications. We foresee suitability of this setup for examining the spatial patterns of local drug release in the brain and the extent of the resultant physiological responses.


Assuntos
Encéfalo/metabolismo , Fluoxetina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Microextração em Fase Sólida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Fluoxetina/análise , Fluoxetina/isolamento & purificação , Projetos Piloto , Ratos , Inibidores Seletivos de Recaptação de Serotonina/análise , Inibidores Seletivos de Recaptação de Serotonina/isolamento & purificação
11.
Anal Chem ; 91(7): 4896-4905, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30848885

RESUMO

Despite the importance of monitoring and correlating neurotransmitter concentrations in the brain with observable behavior and brain areas in which they act, in vivo measurement of multiple neurochemicals in the brain remains a challenge. Here, we propose an alternative solid phase microextraction-based (SPME) chemical biopsy approach as a viable method for acquirement of quantitative information on multiple neurotransmitters by one device within a single sampling event, with multisite measurement capabilities and minimized invasiveness, as no tissue is removed. The miniaturized SPME probe developed for integrated in vivo sampling/sample preparation has been thoroughly optimized with respect to probe shape, desorption solvent, and extracting phase tailored for extraction of small hydrophilic molecules via synthesis and functionalization of the SPME coating. Experimental evaluations of sampling time and storage strategy led to achieving appropriate temporal resolution versus recovery balance as well as little or no analyte loss, respectively. Validation of the developed SPME-HPLC-MS/MS protocol in a surrogate brain matrix yielded satisfactory accuracies of 80-100%, precision below 17%, as well as linear dynamic range and limits of quantitation suitable for determining neurochemicals at physiologically relevant levels. Finally, we present a proof-of-concept in vivo application in macaque brain, where several target neurotransmitters were extracted simultaneously from three brain areas. The developed probe and protocol are herein presented as a potential powerful addition to the existing in vivo toolbox for measurements of local levels of neurochemicals in multiple brain systems implicated in the neuropathology of psychiatric disorders.


Assuntos
Encéfalo/diagnóstico por imagem , Neurotransmissores/isolamento & purificação , Microextração em Fase Sólida , Animais , Cromatografia Líquida de Alta Pressão , Interações Hidrofóbicas e Hidrofílicas , Macaca , Neurotransmissores/química , Tamanho da Partícula , Propriedades de Superfície , Espectrometria de Massas em Tandem
12.
Sci Rep ; 9(1): 402, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674916

RESUMO

Use of solid phase microextraction (SPME) for cell culture metabolomic analysis allows for the attainment of more sophisticated data from in vitro cell cultures. Moreover, considering that SPME allows the implementation of multiple extractions from the same sample due to its non/low-depletive nature, time course studies using the same set of samples are thus facilitated via this method. Such an approach results in a reduction in the number of samples needed for analysis thus eliminates inter-batch variability related to biological variation occurring during cell culturing. The current work aims to demonstrate the capability of SPME for measurements of combretastatin A4 (CA4) effectiveness on non-small cell cancer cell line. A cultivation protocol was established in the 96-well plate, and a fiber format of SPME was selected for metabolite extraction. The extracellular metabolic pattern of cells was changed after administration of the tested drug. This suggests pharmacological activity of the administered compound towards the studied cell line model. Results support that the use of direct immersion SPME for analysis of cell cultures does not affect cells growth or contaminate sample. Consequently, SPME allows the attainment of accurate information regarding drug uptake, metabolism, and metabolomic changes in the studied cells induced by exposure to the drug simultaneously in a single experiment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Metabolômica , Extração em Fase Sólida , Estilbenos , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Estilbenos/farmacocinética , Estilbenos/farmacologia
13.
Sci Rep ; 8(1): 1167, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348436

RESUMO

In vitro high-throughput non-depletive quantitation of chemicals in biofluids is of growing interest in many areas. Some of the challenges facing researchers include the limited volume of biofluids, rapid and high-throughput sampling requirements, and the lack of reliable methods. Coupled to the above, growing interest in the monitoring of kinetics and dynamics of miniaturized biosystems has spurred the demand for development of novel and revolutionary methodologies for analysis of biofluids. The applicability of solid-phase microextraction (SPME) is investigated as a potential technology to fulfill the aforementioned requirements. As analytes with sufficient diversity in their physicochemical features, nicotine, N,N-Diethyl-meta-toluamide, and diclofenac were selected as test compounds for the study. The objective was to develop methodologies that would allow repeated non-depletive sampling from 96-well plates, using 100 µL of sample. Initially, thin film-SPME was investigated. Results revealed substantial depletion and consequent disruption in the system. Therefore, new ultra-thin coated fibers were developed. The applicability of this device to the described sampling scenario was tested by determining the protein binding of the analytes. Results showed good agreement with rapid equilibrium dialysis. The presented method allows high-throughput analysis using small volumes, enabling fast reliable free and total concentration determinations without disruption of system equilibrium.

14.
Anal Chim Acta ; 999: 69-75, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29254576

RESUMO

Coated Blade Spray (CBS) is a technology that efficiently integrates sample preparation and direct coupling to mass spectrometry (MS) on a single device. In this article, we present CBS-tandem mass spectrometry (CBS-MS/MS) as a novel tool for the rapid and simultaneous determination of four commonly used immunosuppressive drugs (ISDs) in whole blood: tacrolimus (TAC) and cyclosporine-A (CycA), which are calcineurin inhibitors; and sirolimus (SIR) and everolimus (EVR), which are both mTOR (mechanistic target of rapamycin) inhibitors. Given that CBS extracts via free concentration, analytes that are largely bound to plasma proteins or red blood cells provide considerably lower extraction recovery rates. Therefore, we defy the solventless philosophy of SPME-based techniques, like CBS, by performing the analyte-enrichment step via direct immersion in a solvent-modified matrix. The assay was linear within the evaluated range of concentrations (between 1 and 100 ng/mL for EVR/SIR/TAC and 10-1000 ng/mL for CycA), and the limits of quantification were determined to be 10 ng/mL for CycA and 1 ng/mL for EVR/SIR/TAC. Good accuracy (87-119%) and linearity (r2 ≥ 0.99) were attained over the evaluated range for all ISDs. Interassay imprecision (CV) determined from incurred sample reanalysis was ≤10% for all ISDs. Our method was validated using Liquichek™ whole blood immunosuppressant quality control (QC) standards purchased from Bio-Rad. Concentrations determined by CBS-MS/MS were inside the range specified by Bio-Rad and within 15% of the expected mean value for all ISDs at all QC levels. Furthermore, the effect of different hematocrit levels (20, 45, and 70%) in the entire calibration range was carefully studied. No statistical differences (RSD ≤ 7%) in the calibration curve slopes of ISDs in blood were observed. CBS offers a simpler workflow than that of traditional methods; it eliminates the need for chromatographic separation and provides a clean extract that allows for long-term MS instrumental operation with minimal maintenance. Additionally, because CBS integrates all analytical steps into one device, it eliminates the risk of instrumental carry-over and can be used as a low-cost disposable device for sample preparation and analysis. Fully-automated sample preparation simplifies the method and allows for total analysis times as short as 3 min with turn-around times of less than 90 min.


Assuntos
Ciclosporina/sangue , Everolimo/sangue , Imunossupressores/sangue , Sirolimo/sangue , Tacrolimo/sangue , Espectrometria de Massas em Tandem/métodos , Fracionamento Químico/instrumentação , Fracionamento Químico/métodos , Monitoramento de Medicamentos/economia , Monitoramento de Medicamentos/instrumentação , Monitoramento de Medicamentos/métodos , Desenho de Equipamento , Humanos , Limite de Detecção , Espectrometria de Massas em Tandem/economia , Espectrometria de Massas em Tandem/instrumentação , Fatores de Tempo
16.
Sci Rep ; 7(1): 16104, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170449

RESUMO

This study demonstrates the quantitative capabilities of coated blade spray (CBS) mass spectrometry (MS) for the concomitant analysis of multiple target substances in biofluid spots. In CBS-MS the analytes present in a given sample are first isolated and enriched in the thin coating of the CBS device. After a quick rinsing of the blade surface, as to remove remaining matrix, the analytes are quickly desorbed with the help of a solvent and then directly electrosprayed into the MS analyzer. Diverse pain management drugs, controlled substances, and therapeutic medications were successfully determined using only 10 µL of biofluid, with limits of quantitation in the low/sub ng·mL-1 level attained within 7 minutes.


Assuntos
Espectrometria de Massas/métodos , Análise Química do Sangue , Humanos , Plasma/química , Padrões de Referência , Espectrometria de Massas em Tandem
17.
Environ Sci Technol ; 51(21): 12566-12572, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28990769

RESUMO

The widespread use of pharmaceuticals in both human and animal populations, and the resultant contamination of surface waters from the outflow of water treatment facilities is an issue of growing concern. This has raised the need for analytical methods that can both perform rapid sample analysis and overcome the limitations of conventional analysis procedures, such as multistep workflows and tedious procedures. Coated blade spray (CBS) is a solid-phase microextraction based technique that enables the direct-to-mass-spectrometry analysis of extracted compounds via the use of limited organic solvent to desorb analytes and perform electrospray ionization. This paper documents how CBS can be applied for the concomitant tandem mass spectrometric (MS/MS) analysis of nine pharmaceuticals in treated wastewater. The total analysis times of less than 11 min provided limits of detection lower than 50 ng L-1 for all target compounds in river water. The CBS methodology was then compared to a conventional solid-phase extraction technique for the analysis of the final effluent of six wastewater treatment facilities. The experimental results strongly suggest that CBS offers scientists a viable alternative method for analyzing water samples that is both rapid and relatively solvent-free.


Assuntos
Preparações Farmacêuticas , Águas Residuárias , Poluentes Químicos da Água , Água Doce , Humanos , Extração em Fase Sólida , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
18.
Anal Chem ; 89(16): 8421-8428, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28715206

RESUMO

Most contemporary methods of screening and quantitating controlled substances and therapeutic drugs in biofluids typically require laborious, time-consuming, and expensive analytical workflows. In recent years, our group has worked toward developing microextraction (µe)-mass spectrometry (MS) technologies that merge all of the tedious steps of the classical methods into a simple, efficient, and low-cost methodology. Unquestionably, the automation of these technologies allows for faster sample throughput, greater reproducibility, and radically reduced analysis times. Coated blade spray (CBS) is a µe technology engineered for extracting/enriching analytes of interest in complex matrices, and it can be directly coupled with MS instruments to achieve efficient screening and quantitative analysis. In this study, we introduced CBS as a technology that can be arranged to perform either rapid diagnostics (single vial) or the high-throughput (96-well plate) analysis of biofluids. Furthermore, we demonstrate that performing 96-CBS extractions at the same time allows the total analysis time to be reduced to less than 55 s per sample. Aiming to validate the versatility of CBS, substances comprising a broad range of molecular weights, moieties, protein binding, and polarities were selected. Thus, the high-throughput (HT)-CBS technology was used for the concomitant quantitation of 18 compounds (mixture of anabolics, ß-2 agonists, diuretics, stimulants, narcotics, and ß-blockers) spiked in human urine and plasma samples. Excellent precision (∼2.5%), accuracy (≥90%), and linearity (R2 ≥ 0.99) were attained for all the studied compounds, and the limits of quantitation (LOQs) were within the range of 0.1 to 10 ng·mL-1 for plasma and 0.25 to 10 ng·mL-1 for urine. The results reported in this paper confirm CBS's great potential for achieving subsixty-second analyses of target compounds in a broad range of fields such as those related to clinical diagnosis, food, the environment, and forensics.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2 , Antagonistas Adrenérgicos beta , Antibacterianos , Agonistas de Receptores Adrenérgicos beta 2/sangue , Agonistas de Receptores Adrenérgicos beta 2/urina , Antagonistas Adrenérgicos beta/sangue , Antagonistas Adrenérgicos beta/urina , Antibacterianos/sangue , Antibacterianos/urina , Ensaios de Triagem em Larga Escala , Humanos , Espectrometria de Massas , Microextração em Fase Sólida
19.
Anal Chem ; 89(15): 8021-8026, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28548491

RESUMO

To date, solid-phase microextraction (SPME) fibers used for in vivo bioanalysis can be too fragile and flexible, which limits suitability for direct tissue sampling. As a result, these devices often require a sheathing needle to prepuncture robust sample matrixes and protect the extraction phase from mechanical damage. To address this limitation, a new SPME device is herein presented which incorporates an extraction phase recessed into the body of a solid needle. This device requires no additional support or shielding during puncture events through protective tissue. The presented device was thoroughly tested, being fired at 90 m·s-1 through fish scales, forced through vial septa, and employed in a targeted study of polyunsaturated fatty acids in salmon where the protective outer skin was repetitively punctured during sampling. Finally, the recessed SPME device was applied to an on-site application for the tissue analysis of wild muskellunge. With this advancement, rapid, minimally invasive, and easily executed in vivo SPME is now possible opening the door to near endless sampling opportunities.

20.
Anal Chem ; 89(7): 4046-4054, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28260369

RESUMO

In this work, a new generation of solid-phase microextraction (SPME) coatings based on polytetrafluoroethylene amorphous fluoroplastics (PTFE AF 2400) as a particle binder is presented. The developed coating was tested for thermal and solvent-assisted desorption, demonstrating its compatibility with both gas- and liquid-chromatographic platforms. The incorporation of hydrophilic-lipophilic balance (HLB) adsorptive particles provided optimal extraction coverage for analytes bearing a broad range of hydrophobicities and molecular weights and of varied chemical diversity. The performance of the newly developed coating was compared to already established coatings based on different polymers such as divinylbenzene/carboxen/polydimethylsiloxane (DVB/Car/PDMS) and octadecyl/benzenesulfonic acid/polyacrylonitrile (C18/SCX/PAN) in order to assess the new prototype versus the existing technology. As this is the first documented instance of PTFE AF being used as a particle immobilizer for SPME, an assessment of the analyte uptake rate and extraction capability of the developed coating was carried out in comparison to other conventionally used polymers. Moreover, the new SPME probes were used to validate an analytical method for determination of banned doping substances, achieving limits of quantitation below the minimum required performance limits (MRPLs) set by the World Anti-Doping Agency (WADA) for most compounds. Considering the broad coverage of the coating in terms of analytes extracted and its suitability for both thermal- and solvent-assisted desorption, these new SPME probes will properly suit various metabolomics applications that involve the use of both gas- and liquid-chromatography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...