Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0290902, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733661

RESUMO

Nitric oxide synthase 3 (NOS3) eluting polyvinyl alcohol-based hydrogels have a large potential in medical applications and device coatings. NOS3 promotes nitric oxide and nitrate production and can effectively be delivered using insect cell viruses, termed baculoviruses. Nitric oxide is known for regulating cell proliferation, promoting blood vessel vasodilation, and inhibiting bacterial growth. The polyvinyl alcohol (PVA)-based hydrogels investigated here sustained baculovirus elution from five to 25 days, depending on the hydrogel composition. The quantity of viable baculovirus loaded significantly declined with each freeze-thaw from one to four (15.3 ± 2.9% vs. 0.9 ± 0.5%, respectively). The addition of gelatin to the hydrogels protected baculovirus viability during the freeze-thaw cycles, resulting in a loading capacity of 94.6 ± 1.2% with sustained elution over 23 days. Adding chitosan, PEG-8000, and gelatin to the hydrogels altered the properties of the hydrogel, including swelling, blood coagulation, and antimicrobial effects, beneficial for different therapeutic applications. Passive absorption of the baculovirus into PVA hydrogels exhibited the highest baculovirus loading (96.4 ± 0.6%) with elution over 25 days. The baculovirus-eluting hydrogels were hemocompatible and non-cytotoxic, with no cell proliferation or viability reduction after incubation. This PVA delivery system provides a method for high loading and sustained release of baculoviruses, sustaining nitric oxide gene delivery. This proof of concept has clinical applications as a medical device or stent coating by delivering therapeutic genes, improving blood compatibility, preventing thrombosis, and preventing infection.


Assuntos
Baculoviridae , Vírus de Insetos , Baculoviridae/genética , Gelatina , Óxido Nítrico , Álcool de Polivinil , Hidrogéis
2.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36355553

RESUMO

Hydrogel wound dressings are effective in their ability to provide a wound-healing environment but are limited by their ability to promote later stages of revascularization. Here, a biosafe recombinant baculovirus expressing VEGFA tagged with EGFP is encapsulated in chitosan-coated alginate hydrogels using ionic cross-linking. The VEGFA, delivered by the baculovirus, significantly improves cell migration and angiogenesis to assist with the wound-healing process and revascularization. Moreover, the hydrogels have an encapsulation efficiency of 99.9%, no cytotoxicity, antimicrobial properties, good blood compatibility, promote hemostasis, and enable sustained delivery of baculoviruses over eight days. These hydrogels sustain baculovirus delivery and may have clinical implications in wound dressings or future gene therapy applications.

3.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293544

RESUMO

Metabolic syndrome is a leading medical concern that affects one billion people worldwide. Metabolic syndrome is defined by a clustering of risk factors that predispose an individual to cardiovascular disease, diabetes and stroke. In recent years, the apparent role of the gut microbiota in metabolic syndrome has drawn attention to microbiome-engineered therapeutics. Specifically, lactic acid bacteria (LAB) harbors beneficial metabolic characteristics, including the production of exopolysaccharides and other microbial byproducts. We recently isolated a novel fructophilic lactic acid bacterium (FLAB), Apilactobacillus waqarii strain HBW1, from honeybee gut and found it produces a dextran-type exopolysaccharide (EPS). The objective of this study was to explore the therapeutic potential of the new dextran in relation to metabolic syndrome. Findings revealed the dextran's ability to improve the viability of damaged HT-29 intestinal epithelial cells and exhibit antioxidant properties. In vivo analyses demonstrated reductions in body weight gain and serum cholesterol levels in mice supplemented with the dextran, compared to control (5% and 17.2%, respectively). Additionally, blood glucose levels decreased by 16.26% following dextran supplementation, while increasing by 15.2% in non-treated mice. Overall, this study displays biotherapeutic potential of a novel EPS to improve metabolic syndrome and its individual components, warranting further investigation.


Assuntos
Síndrome Metabólica , Animais , Camundongos , Abelhas , Síndrome Metabólica/metabolismo , Dextranos , Antioxidantes , Glicemia , Colesterol , Ácido Láctico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...