Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(3): 232, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519456

RESUMO

Unlike the intense research effort devoted to exploring the significance of heparanase in cancer, very little attention was given to Hpa2, a close homolog of heparanase. Here, we explored the role of Hpa2 in breast cancer. Unexpectedly, we found that patients endowed with high levels of Hpa2 exhibited a higher incidence of tumor metastasis and survived less than patients with low levels of Hpa2. Immunohistochemical examination revealed that in normal breast tissue, Hpa2 localizes primarily in the cell nucleus. In striking contrast, in breast carcinoma, Hpa2 expression is not only decreased but also loses its nuclear localization and appears diffuse in the cell cytoplasm. Importantly, breast cancer patients in which nuclear localization of Hpa2 is retained exhibited reduced lymph-node metastasis, suggesting that nuclear localization of Hpa2 plays a protective role in breast cancer progression. To examine this possibility, we engineered a gene construct that directs Hpa2 to the cell nucleus (Hpa2-Nuc). Notably, overexpression of Hpa2 in breast carcinoma cells resulted in bigger tumors, whereas targeting Hpa2 to the cell nucleus attenuated tumor growth and tumor metastasis. RNAseq analysis was performed to reveal differentially expressed genes (DEG) in Hpa2-Nuc tumors vs. control. The analysis revealed, among others, decreased expression of genes associated with the hallmark of Kras, beta-catenin, and TNF-alpha (via NFkB) signaling. Our results imply that nuclear localization of Hpa2 prominently regulates gene transcription, resulting in attenuation of breast tumorigenesis. Thus, nuclear Hpa2 may be used as a predictive parameter in personalized medicine for breast cancer patients.


Assuntos
Neoplasias da Mama , Glucuronidase , Humanos , Feminino , Glucuronidase/genética , Glucuronidase/metabolismo , Neoplasias da Mama/genética , Transdução de Sinais , Núcleo Celular/metabolismo
2.
Cell Death Dis ; 15(2): 174, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409173

RESUMO

miR-184-knockout mice display perturbed epidermal stem cell differentiation. However, the potential role of miR-184 in skin pathology is unclear. Here, we report that miR-184 controls epidermal stem cell dynamics and that miR-184 ablation enhances skin carcinogenesis in mice. In agreement, repression of miR-184 in human squamous cell carcinoma (SCC) enhances neoplastic hallmarks of human SCC cells in vitro and tumor development in vivo. Characterization of miR-184-regulatory network, suggests that miR-184 inhibits pro-oncogenic pathways, cell proliferation, and epithelial to mesenchymal transformation. Of note, depletion of miR-184 enhances the levels of ß-catenin under homeostasis and following experimental skin carcinogenesis. Finally, the repression of ß-catenin by miR-184, inhibits the neoplastic phenotype of SCC cells. Taken together, miR-184 behaves as an epidermal tumor suppressor, and may provide a potentially useful target for skin SCC therapy.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Neoplasias Cutâneas , Animais , Humanos , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Carcinogênese/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
3.
Proc Natl Acad Sci U S A ; 119(31): e2203167119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881786

RESUMO

Heparan sulfate proteoglycans (HSPGs) mediate essential interactions throughout the extracellular matrix (ECM), providing signals that regulate cellular growth and development. Altered HSPG composition during tumorigenesis strongly aids cancer progression. Heparanase (HPSE) is the principal enzyme responsible for extracellular heparan sulfate catabolism and is markedly up-regulated in aggressive cancers. HPSE overactivity degrades HSPGs within the ECM, facilitating metastatic dissemination and releasing mitogens that drive cellular proliferation. Reducing extracellular HPSE activity reduces cancer growth, but few effective inhibitors are known, and none are clinically approved. Inspired by the natural glycosidase inhibitor cyclophellitol, we developed nanomolar mechanism-based, irreversible HPSE inhibitors that are effective within physiological environments. Application of cyclophellitol-derived HPSE inhibitors reduces cancer aggression in cellulo and significantly ameliorates murine metastasis. Mechanism-based irreversible HPSE inhibition is an unexplored anticancer strategy. We demonstrate the feasibility of such compounds to control pathological HPSE-driven malignancies.


Assuntos
Glucuronidase , Inibidores de Glicosídeo Hidrolases , Metástase Neoplásica , Animais , Proliferação de Células/efeitos dos fármacos , Glucuronidase/antagonistas & inibidores , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Proteoglicanas de Heparan Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Camundongos , Metástase Neoplásica/tratamento farmacológico
4.
J Matern Fetal Neonatal Med ; 35(25): 5840-5845, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33691578

RESUMO

PURPOSE: Heparanase is an endo-ß-glucuronidase that cleaves side chains of heparan-sulfate proteoglycans, an integral constituent of the extra cellular matrix. The abundance of heparanase in placental trophoblast cells implies its role in the processes of placentation and trophoblast invasion. This study aims to explore the involvement of heparanase in parturition and preterm deliveries (PTD). METHODS: Sixteen human placentas were collected following singleton spontaneous onset term vaginal deliveries (n = 6), spontaneous onset preterm vaginal deliveries (n = 7) and term elective cesarean sections (n = 3). Placentas were excluded in case of any maternal chronic illness, pregnancy or delivery complications apart from PTD. Placental tissue samples were dissected, homogenized and proteins were extracted. Additionally, cryosections were prepared from the placental tissues. Heparanase expression was evaluated utilizing western blot analysis and immunofluorescence staining using heparanase specific antibodies. Heparanase expression was compared between the study groups qualitatively and quantitatively. RESULTS: Western blot analysis results demonstrated higher expression of both pro-heparanase and heparanase in PTD placentas compared to term vaginal placentas. Accordingly, immunofluorescence staining shows elevated heparanase expression in PTD placentas compared to term vaginal placentas (5.1 ± 0.92 vs. 1.2 ± 0.18, p < .005). Expression level of heparanase was higher in term cesarean section placentas as compared to term vaginal deliveries placentas, but did not reach statistical significance (1.8 ± 0.39 vs. 1.2 ± 0.18, p = .06). CONCLUSION: This study demonstrates for the first time that preterm vaginal deliveries are associated with higher expression of heparanase in placental tissue. This may imply a direct effect of heparanase on preterm labor. Further studies should evaluate the functional role by which heparanase influence preterm delivery.


Assuntos
Placenta , Nascimento Prematuro , Recém-Nascido , Gravidez , Humanos , Feminino , Placenta/metabolismo , Cesárea , Placentação , Glucuronidase/metabolismo , Nascimento Prematuro/metabolismo
5.
Cancers (Basel) ; 13(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199150

RESUMO

Compelling evidence ties heparanase, an endoglycosidase that cleaves heparan sulfate side (HS) chains of proteoglycans, with all steps of tumor development, including tumor initiation, angiogenesis, growth, metastasis, and chemoresistance. Moreover, heparanase levels correlate with shorter postoperative survival of cancer patients, encouraging the development of heparanase inhibitors as anti-cancer drugs. Heparanase-inhibiting heparin/heparan sulfate-mimicking compounds and neutralizing antibodies are highly effective in animal models of cancer progression, yet none of the compounds reached the stage of approval for clinical use. The present study focused on newly synthesized triazolo-thiadiazoles, of which compound 4-iodo-2-(3-(p-tolyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)phenol (4-MMI) was identified as a potent inhibitor of heparanase enzymatic activity, cell invasion, experimental metastasis, and tumor growth in mouse models. To the best of our knowledge, this is the first report showing a marked decrease in primary tumor growth in mice treated with small molecules that inhibit heparanase enzymatic activity. This result encourages the optimization of 4-MMI for preclinical and clinical studies primarily in cancer but also other indications (i.e., colitis, pancreatitis, diabetic nephropathy, tissue fibrosis) involving heparanase, including viral infection and COVID-19.

6.
Matrix Biol ; 99: 58-71, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34004353

RESUMO

The pro-tumorigenic properties of heparanase are well documented, and heparanase inhibitors are being evaluated clinically as anti-cancer therapeutics. In contrast, the role of heparanase 2 (Hpa2), a close homolog of heparanase, in cancer is largely unknown. Previously, we have reported that in head and neck cancer, high levels of Hpa2 are associated with prolonged patient survival and decreased tumor cell dissemination to regional lymph nodes, suggesting that Hpa2 functions to restrain tumorigenesis. Also, patients with high levels of Hpa2 were diagnosed as low grade and exhibited increased expression of cytokeratins, an indication that Hpa2 promotes or maintains epithelial cell differentiation and identity. To reveal the molecular mechanism underlying the tumor suppressor properties of Hpa2, and its ability to induce the expression of cytokeratin, we employed overexpression as well as gene editing (Crispr) approaches, combined with gene array and RNAseq methodologies. At the top of the list of many genes found to be affected by Hpa2 was Sox2. Here we provide evidence that silencing of Sox2 resulted in bigger tumors endowed with reduced cytokeratin levels, whereas smaller tumors were developed by cells overexpressing Sox2, suggesting that in head and neck carcinoma, Sox2 functions to inhibit tumor growth. Notably, Hpa2-null cells engineered by Crispr/Cas 9, produced bigger tumors vs control cells, and rescue of Hpa2 attenuated tumor growth. These results strongly imply that Hpa2 functions as a tumor suppressor in head and neck cancer, involving Sox2 upregulation mediated, in part, by the high-affinity interaction of Hpa2 with heparan sulfate.


Assuntos
Glucuronidase , Neoplasias de Cabeça e Pescoço , Glucuronidase/genética , Neoplasias de Cabeça e Pescoço/genética , Heparitina Sulfato , Humanos , Fatores de Transcrição SOXB1/genética
7.
Adv Exp Med Biol ; 1221: 253-283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274713

RESUMO

Two decades following the cloning of the heparanase gene, the significance of this enzyme for tumor growth and metastasis cannot be ignored. Compelling pre-clinical and clinical evidence tie heparanase with all steps of tumor formation namely, initiation, growth, metastasis, and chemo resistance, thus confirming and significantly expanding earlier observations that coupled heparanase activity with the metastatic capacity of tumor cells. This collective effort has turned heparanase from an obscure enzyme to a valid target for the development of anti-cancer drugs, and led basic researchers and biotech companies to develop heparanase inhibitors as anti-cancer therapeutics, some of which are currently examined clinically. As expected, the intense research effort devoted to understanding the biology of heparanase significantly expanded the functional repertoire of this enzyme, but some principle questions are still left unanswered or are controversial. For example, many publications describe increased heparanase levels in human tumors, but the mechanism underlying heparanase induction is not sufficiently understood. Moreover, heparanase is hardly found to be increased in many studies utilizing methodologies (i.e., gene arrays) that compare tumors vs (adjacent) normal tissue. The finding that heparanase exert also enzymatic activity-independent function significantly expands the mode by which heparanase can function outside, but also inside the cell. Signaling aspects, and a role of heparanase in modulating autophagy are possibly as important as its enzymatic aspect, but these properties are not targeted by heparanase inhibitors, possibly compromising their efficacy. This Book chapter review heparanase function in oncology, suggesting a somewhat different interpretation of the results.


Assuntos
Glucuronidase/metabolismo , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Glucuronidase/antagonistas & inibidores , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais
8.
Cancer Res ; 80(1): 57-68, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31690669

RESUMO

The emerging role of heparanase in tumor initiation, growth, metastasis, and chemoresistance is well recognized, encouraging the development of heparanase inhibitors as anticancer drugs. Unlike the function of heparanase in cancer cells, little attention has been given to heparanase contributed by cells composing the tumor microenvironment. Here, we focused on the cross-talk between macrophages, chemotherapy, and heparanase and the combined effect on tumor progression. Macrophages were markedly activated by chemotherapeutics paclitaxel and cisplatin, evidenced by increased expression of proinflammatory cytokines, supporting recent studies indicating that chemotherapy may promote rather than suppress tumor regrowth and spread. Strikingly, cytokine induction by chemotherapy was not observed in macrophages isolated from heparanase-knockout mice, suggesting macrophage activation by chemotherapy is heparanase dependent. paclitaxel-treated macrophages enhanced the growth of Lewis lung carcinoma tumors that was attenuated by a CXCR2 inhibitor. Mechanistically, paclitaxel and cisplatin activated methylation of histone H3 on lysine 4 (H3K4) in wild-type but not in heparanase-knockout macrophages. Furthermore, the H3K4 presenter WDR5 functioned as a molecular determinant that mediated cytokine induction by paclitaxel. This epigenetic, heparanase-dependent host-response mechanism adds a new perspective to the tumor-promoting functions of chemotherapy, and offers new treatment modalities to optimize chemotherapeutics. SIGNIFICANCE: Chemotherapy-treated macrophages are activated to produce proinflammatory cytokines, which are blunted in the absence of heparanase.


Assuntos
Antineoplásicos/efeitos adversos , Carcinoma Pulmonar de Lewis/patologia , Glucuronidase/metabolismo , Macrófagos/imunologia , Microambiente Tumoral/imunologia , Animais , Carcinogênese/efeitos dos fármacos , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Lewis/imunologia , Linhagem Celular Tumoral , Cisplatino/efeitos adversos , Metilação de DNA/efeitos dos fármacos , Ensaios Enzimáticos , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucuronidase/genética , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Paclitaxel/efeitos adversos , Microambiente Tumoral/efeitos dos fármacos
9.
Nat Commun ; 10(1): 1492, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940817

RESUMO

Accumulating evidence points to an important role for the gut microbiome in anti-tumor immunity. Here, we show that altered intestinal microbiota contributes to anti-tumor immunity, limiting tumor expansion. Mice lacking the ubiquitin ligase RNF5 exhibit attenuated activation of the unfolded protein response (UPR) components, which coincides with increased expression of inflammasome components, recruitment and activation of dendritic cells and reduced expression of antimicrobial peptides in intestinal epithelial cells. Reduced UPR expression is also seen in murine and human melanoma tumor specimens that responded to immune checkpoint therapy. Co-housing of Rnf5-/- and WT mice abolishes the anti-tumor immunity and tumor inhibition phenotype, whereas transfer of 11 bacterial strains, including B. rodentium, enriched in Rnf5-/- mice, establishes anti-tumor immunity and restricts melanoma growth in germ-free WT mice. Altered UPR signaling, exemplified in Rnf5-/- mice, coincides with altered gut microbiota composition and anti-tumor immunity to control melanoma growth.


Assuntos
Proliferação de Células , Microbioma Gastrointestinal , Melanoma/imunologia , Melanoma/microbiologia , Proteínas de Membrana/deficiência , Ubiquitina-Proteína Ligases/deficiência , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Humanos , Intestinos/imunologia , Intestinos/microbiologia , Melanoma/enzimologia , Melanoma/fisiopatologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Resposta a Proteínas não Dobradas
10.
Oncotarget ; 9(27): 19294-19306, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29721203

RESUMO

Heparanase, the sole heparan sulfate (HS) degrading endoglycosidase, regulates multiple biological activities that enhance tumor growth, metastasis, angiogenesis, and inflammation. Heparanase accomplishes this by degrading HS and thereby facilitating cell invasion and regulating the bioavailability of heparin-binding proteins. HS mimicking compounds that inhibit heparanase enzymatic activity were examined in numerous preclinical cancer models. While these studies utilized established tumor cell lines, the current study utilized, for the first time, patient-derived xenografts (PDX) which better resemble the behavior and drug responsiveness of a given cancer patient. We have previously shown that heparanase levels are substantially elevated in lung cancer, correlating with reduced patients survival. Applying patient-derived lung cancer xenografts and a potent inhibitor of heparanase enzymatic activity (PG545) we investigated the significance of heparanase in the pathogenesis of lung cancer. PG545 was highly effective in lung cancer PDX, inhibiting tumor growth in >85% of the cases. Importantly, we show that PG545 was highly effective in PDX that did not respond to conventional chemotherapy (cisplatin) and vice versa. Moreover, we show that spontaneous metastasis to lymph nodes is markedly inhibited by PG545 but not by cisplatin. These results reflect the variability among patients and strongly imply that PG545 can be applied for lung cancer therapy in a personalized manner where conventional chemotherapy fails, thus highlighting the potential benefits of developing anti-heparanase treatment modalities for oncology.

11.
Oncotarget ; 9(5): 6238-6244, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29464068

RESUMO

High levels of heparanase are detected in many types of tumors, associated with bad prognosis. Typically, heparanase levels are evaluated in a biopsy taken from the primary lesion, whereas its expression by the resulting metastases is most often unresolved. This becomes critically important as anti-heparanase compounds enter advanced clinical trials. Here, we examined the expression of heparanase in pairs of primary and the resulting distant metastases of breast carcinoma. Interestingly, we found that heparanase expression in the metastatic lesion does not always reflect its expression in the primary tumor. Accordingly, in some cases, the primary lesion was stained positive for heparanase while the metastasis stained negative, and vice versa. Heparanase discordance occurred in 38% of the patients, higher than that reported for hormone receptors, and was associated with bad prognosis. Thus, examination of heparanase levels in the tumor metastases should be evaluated for most efficient precision medicine applying heparanase inhibitors. Furthermore, we found that in stage I breast cancer patients strong heparanase staining is associated with shorter overall survival. Thus, heparanase levels can assist in the diagnosis and in determining the necessity and type of treatment in early stage breast cancer.

12.
Matrix Biol ; 65: 91-103, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28916201

RESUMO

Heparanase is an endoglucuronidase that uniquely cleaves the heparan sulfate side chains of heparan sulfate proteoglycans. This activity ultimately alters the structural integrity of the ECM and basement membrane that becomes more prone to cellular invasion by metastatic cancer cells and cells of the immune system. In addition, enzymatically inactive heparanase was found to facilitate the proliferation and survival of cancer cells by activation of signaling molecules such as Akt, Src, signal transducer and activation of transcription (Stat), and epidermal growth factor receptor. This function is thought to be executed by the C-terminal domain of heparanase (8c), because over expression of this domain in cancer cells accelerated signaling cascades and tumor growth. We have used the regulatory elements of the mouse mammary tumor virus (MMTV) to direct the expression heparanase and the C-domain (8c) to the mammary gland epithelium of transgenic mice. Here, we report that mammary gland branching morphogenesis is increased in MMTV-heparanase and MMTV-8c mice, associating with increased Akt, Stat5 and Src phosphorylation. Furthermore, we found that the growth of tumors generated by mouse breast cancer cells and the resulting lung metastases are enhanced in MMTV-heparanase mice, thus supporting the notion that heparanase contributed by the tumor microenvironment (i.e., normal mammary epithelium) plays a decisive role in tumorigenesis. Remarkably, MMTV-8c mice develop spontaneous tumors in their mammary and salivary glands. Although this occurs at low rates and requires long latency, it demonstrates decisively the pro-tumorigenic capacity of heparanase signaling.


Assuntos
Neoplasias da Mama/patologia , Glucuronidase/genética , Glucuronidase/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Glândulas Mamárias Animais/crescimento & desenvolvimento , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Glucuronidase/química , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Glândulas Mamárias Animais/metabolismo , Vírus do Tumor Mamário do Camundongo/fisiologia , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Domínios Proteicos , Transdução de Sinais
13.
Drug Resist Updat ; 29: 54-75, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27912844

RESUMO

Heparanase, the sole heparan sulfate degrading endoglycosidase, regulates multiple biological activities that enhance tumor growth, angiogenesis and metastasis. Heparanase expression is enhanced in almost all cancers examined including various carcinomas, sarcomas and hematological malignancies. Numerous clinical association studies have consistently demonstrated that upregulation of heparanase expression correlates with increased tumor size, tumor angiogenesis, enhanced metastasis and poor prognosis. In contrast, knockdown of heparanase or treatments of tumor-bearing mice with heparanase-inhibiting compounds, markedly attenuate tumor progression further underscoring the potential of anti-heparanase therapy for multiple types of cancer. Heparanase neutralizing monoclonal antibodies block myeloma and lymphoma tumor growth and dissemination; this is attributable to a combined effect on the tumor cells and/or cells of the tumor microenvironment. In fact, much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth, metastasis and chemoresistance. The repertoire of the physio-pathological activities of heparanase is expanding. Specifically, heparanase regulates gene expression, activates cells of the innate immune system, promotes the formation of exosomes and autophagosomes, and stimulates signal transduction pathways via enzymatic and non-enzymatic activities. These effects dynamically impact multiple regulatory pathways that together drive inflammatory responses, tumor survival, growth, dissemination and drug resistance; but in the same time, may fulfill some normal functions associated, for example, with vesicular traffic, lysosomal-based secretion, stress response, and heparan sulfate turnover. Heparanase is upregulated in response to chemotherapy in cancer patients and the surviving cells acquire chemoresistance, attributed, at least in part, to autophagy. Consequently, heparanase inhibitors used in tandem with chemotherapeutic drugs overcome initial chemoresistance, providing a strong rationale for applying anti-heparanase therapy in combination with conventional anti-cancer drugs. Heparin-like compounds that inhibit heparanase activity are being evaluated in clinical trials for various types of cancer. Heparanase neutralizing monoclonal antibodies are being evaluated in pre-clinical studies, and heparanase-inhibiting small molecules are being developed based on the recently resolved crystal structure of the heparanase protein. Collectively, the emerging premise is that heparanase expressed by tumor cells, innate immune cells, activated endothelial cells as well as other cells of the tumor microenvironment is a master regulator of the aggressive phenotype of cancer, an important contributor to the poor outcome of cancer patients and a prime target for therapy.


Assuntos
Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Glucuronidase/antagonistas & inibidores , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Autofagia/efeitos dos fármacos , Autofagia/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Glucuronidase/genética , Glucuronidase/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Neovascularização Patológica/prevenção & controle , Transdução de Sinais , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
14.
Oncotarget ; 7(46): 74678-74685, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27732945

RESUMO

BACKGROUND: Heparanase expression is induced in many types of cancers, including melanoma, and promotes tumor growth, angiogenesis and metastasis. However, there is insufficient data regarding heparanase expression in the metastatic lesions that are the prime target for anti-cancer therapeutics. To that end, we examined heparanase expression in metastatic melanoma and its correlation with clinical parameters. RESULTS: Heparanase staining was detected in 88% of the samples, and was strong in 46%. For the entire cohort of metastatic melanoma patients, no apparent correlation was found between heparanase staining intensity and survival. However, in a sub group of 46 patients diagnosed as stage IVc melanoma, strong heparanase staining was associated with reduced survival rates [hazard ratio=2.1; 95%CI 1.1-4.1, p=0.025]. MATERIAL AND METHODS: Paraffin sections from 69 metastatic melanomas were subjected to immunohistochemical analysis, applying anti-heparanase antibody. The clinical and pathological data, together with heparanase staining intensity, were evaluated in a logistic regression model for site of metastasis and survival. Slides were also stained for the heparanase-homolog, heparanase-2 (Hpa2). CONCLUSIONS: Heparanase is highly expressed in metastatic melanoma and predicts poor survival of stage IVc melanoma patients, justifying the development and implementation of heparanase inhibitors as anti-cancer therapeutics.


Assuntos
Glucuronidase/metabolismo , Melanoma/metabolismo , Melanoma/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Feminino , Expressão Gênica , Glucuronidase/genética , Humanos , Imuno-Histoquímica , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida
15.
Cancer Res ; 75(18): 3946-57, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26249176

RESUMO

Heparanase is the only enzyme in mammals capable of cleaving heparan sulfate, an activity implicated in tumor inflammation, angiogenesis, and metastasis. Heparanase is secreted as a latent enzyme that is internalized and subjected to proteolytic processing and activation in lysosomes. Its role under normal conditions has yet to be understood. Here, we provide evidence that heparanase resides within autophagosomes, where studies in heparanase-deficient or transgenic mice established its contributions to autophagy. The protumorigenic properties of heparanase were found to be mediated, in part, by its proautophagic function, as demonstrated in tumor xenograft models of human cancer and through use of inhibitors of the lysosome (chloroquine) and heparanase (PG545), both alone and in combination. Notably, heparanase-overexpressing cells were more resistant to stress and chemotherapy in a manner associated with increased autophagy, effects that were reversed by chloroquine treatment. Collectively, our results establish a role for heparanase in modulating autophagy in normal and malignant cells, thereby conferring growth advantages under stress as well as resistance to chemotherapy. Cancer Res; 75(18); 3946-57. ©2015 AACR.


Assuntos
Autofagia/fisiologia , Glucuronidase/fisiologia , Proteínas de Neoplasias/fisiologia , Aminoácidos/deficiência , Animais , Antineoplásicos/farmacologia , Carcinoma/patologia , Divisão Celular , Linhagem Celular Tumoral , Células Cultivadas , Cloroquina/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Fibroblastos/enzimologia , Glioma/patologia , Xenoenxertos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Complexos Multiproteicos/metabolismo , Fagossomos/enzimologia , Neoplasias Faríngeas/patologia , Fosfatidiletanolaminas/metabolismo , Ratos , Serina-Treonina Quinases TOR/metabolismo , Ensaio Tumoral de Célula-Tronco
16.
Cancer Res ; 74(16): 4504-14, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24970482

RESUMO

Heparanase has been implicated in cancer but its contribution to the early stages of cancer development is uncertain. In this study, we utilized nontransformed human MCF10A mammary epithelial cells and two genetic mouse models [Hpa-transgenic (Hpa-Tg) and knockout mice] to explore heparanase function at early stages of tumor development. Heparanase overexpression resulted in significantly enlarged asymmetrical acinar structures, indicating increased cell proliferation and decreased organization. This phenotype was enhanced by coexpression of heparanase variants with a mutant H-Ras gene, which was sufficient to enable growth of invasive carcinoma in vivo. These observations were extended in vivo by comparing the response of Hpa-Tg mice to a classical two-stage 12-dimethylbenz(a)anthracene (DMBA)/12-o-tetradecanoylphorbol-13-acetate (TPA) protocol for skin carcinogenesis. Hpa-Tg mice overexpressing heparanase were far more sensitive than control mice to DMBA/TPA treatment, exhibiting a 10-fold increase in the number and size of tumor lesions. Conversely, DMBA/TPA-induced tumor formation was greatly attenuated in Hpa-KO mice lacking heparanase, pointing to a critical role of heparanase in skin tumorigenesis. In support of these observations, the heparanase inhibitor PG545 potently suppressed tumor progression in this model system. Taken together, our findings establish that heparanase exerts protumorigenic properties at early stages of tumor initiation, cooperating with Ras to dramatically promote malignant development.


Assuntos
Neoplasias da Mama/enzimologia , Genes ras , Glucuronidase/metabolismo , Neoplasias Cutâneas/enzimologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Processos de Crescimento Celular/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Fosforilação , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...