Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(9): e2308346, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084435

RESUMO

Modulation of autophagy, specifically its inhibition, stands to transform the capacity to effectively treat a broad range of cancers. However, the clinical efficacy of autophagy inhibitors has been inconsistent. To delineate clinical and epidemiological features associated with autophagy inhibition and a positive oncological clinical response, a retrospective analysis of patients is conducted treated with hydroxychloroquine, a known autophagy inhibitor. A direct correlation between smoking status and inhibition of autophagy with hydroxychloroquine is identified. Recognizing that smoking is associated with elevated circulating levels of carbon monoxide (CO), it is hypothesized that supplemental CO can amplify autophagy inhibition. A novel, gas-entrapping material containing CO in a pre-clinical model is applied and demonstrated that CO can dramatically increase the cytotoxicity of autophagy inhibitors and significantly inhibit the growth of tumors when used in combination. These data support the notion that safe, therapeutic levels of CO can markedly enhance the efficacy of autophagy inhibitors, opening a promising new frontier in the quest to improve cancer therapies.


Assuntos
Hidroxicloroquina , Neoplasias Pulmonares , Masculino , Humanos , Hidroxicloroquina/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Monóxido de Carbono/farmacologia , Próstata , Estudos Retrospectivos , Autofagia
2.
Adv Sci (Weinh) ; 10(10): e2205995, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36727291

RESUMO

Tumor hypoxia drives resistance to many cancer therapies, including radiotherapy and chemotherapy. Methods that increase tumor oxygen pressures, such as hyperbaric oxygen therapy and microbubble infusion, are utilized to improve the responses to current standard-of-care therapies. However, key obstacles remain, in particular delivery of oxygen at the appropriate dose and with optimal pharmacokinetics. Toward overcoming these hurdles, gas-entrapping materials (GeMs) that are capable of tunable oxygen release are formulated. It is shown that injection or implantation of these materials into tumors can mitigate tumor hypoxia by delivering oxygen locally and that these GeMs enhance responsiveness to radiation and chemotherapy in multiple tumor types. This paper also demonstrates, by comparing an oxygen (O2 )-GeM to a sham GeM, that the former generates an antitumorigenic and immunogenic tumor microenvironment in malignant peripheral nerve sheath tumors. Collectively the results indicate that the use of O2 -GeMs is promising as an adjunctive strategy for the treatment of solid tumors.


Assuntos
Oxigenoterapia Hiperbárica , Neoplasias , Humanos , Oxigênio , Neoplasias/tratamento farmacológico , Hipóxia Tumoral , Microambiente Tumoral
3.
Adv Healthc Mater ; 12(8): e2202232, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36479632

RESUMO

The conventional manufacturing of extracellular vesicles (EVs) is characterized by low yields and batch-to-batch variability, hampering fundamental research on EVs and their practical applications. Perfusion operations have huge potential to address these limitations and increase the productivity and quality of EVs. In this study, perfusion cultures are simulated with batch-refeed systems and their productivity is compared with that achieved using batch cultures. It is shown that a shift from batch to batch-refeed system can increase the space-time yields of a target EV subpopulation characterized by CD81 and CD63 biomarkers by threefold. Moreover, it is demonstrated that the method facilitates the consistent production of the target EVs from cells maintained under constant conditions for 13 days. These results indicate that the use of perfusion cultures is a promising strategy to increase the manufacturing yield of EVs and control the production of specific EV subpopulations with constant quality attributes, thereby improving reproducibility.


Assuntos
Vesículas Extracelulares , Reprodutibilidade dos Testes , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Biomarcadores
4.
Sci Transl Med ; 14(651): eabl4135, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35767653

RESUMO

Carbon monoxide (CO) has long been considered a toxic gas but is now a recognized bioactive gasotransmitter with potent immunomodulatory effects. Although inhaled CO is currently under investigation for use in patients with lung disease, this mode of administration can present clinical challenges. The capacity to deliver CO directly and safely to the gastrointestinal (GI) tract could transform the management of diseases affecting the GI mucosa such as inflammatory bowel disease or radiation injury. To address this unmet need, inspired by molecular gastronomy techniques, we have developed a family of gas-entrapping materials (GEMs) for delivery of CO to the GI tract. We show highly tunable and potent delivery of CO, achieving clinically relevant CO concentrations in vivo in rodent and swine models. To support the potential range of applications of foam GEMs, we evaluated the system in three distinct disease models. We show that a GEM containing CO dose-dependently reduced acetaminophen-induced hepatocellular injury, dampened colitis-associated inflammation and oxidative tissue injury, and mitigated radiation-induced gut epithelial damage in rodents. Collectively, foam GEMs have potential paradigm-shifting implications for the safe therapeutic use of CO across a range of indications.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Monóxido de Carbono/uso terapêutico , Colite/tratamento farmacológico , Gases , Inflamação/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Suínos
5.
ACS Pharmacol Transl Sci ; 3(6): 1076-1082, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33330837

RESUMO

N95 filtering facepiece respirators (FFR) and surgical masks are essential in reducing airborne disease transmission, particularly during the COVID-19 pandemic. However, currently available FFR's and masks have major limitations, including masking facial features, waste, and integrity after decontamination. In a multi-institutional trial, we evaluated a transparent, elastomeric, adaptable, long-lasting (TEAL) respirator to evaluate success of qualitative fit test with user experience and biometric evaluation of temperature, respiratory rate, and fit of respirator using a novel sensor. There was a 100% successful fit test among participants, with feedback demonstrating excellent or good fit (90% of participants), breathability (77.5%), and filter exchange (95%). Biometric testing demonstrated significant differences between exhalation and inhalation pressures among a poorly fitting respirator, well-fitting respirator, and the occlusion of one filter of the respirator. We have designed and evaluated a transparent elastomeric respirator and a novel biometric feedback system that could be implemented in the hospital setting.

6.
J Am Chem Soc ; 142(29): 12802-12810, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32638590

RESUMO

Melanins are a family of heterogeneous biopolymers found ubiquitously across plant, animal, bacterial, and fungal kingdoms where they act variously as pigments and as radiation protection agents. There exist five multifunctional yet structurally and biosynthetically incompletely understood varieties of melanin: eumelanin, neuromelanin, pyomelanin, allomelanin, and pheomelanin. Although eumelanin and allomelanin have been the focus of most radiation protection studies to date, some research suggests that pheomelanin has a better absorption coefficient for X-rays than eumelanin. We reasoned that if a selenium enriched melanin existed, it would be a better X-ray protector than the sulfur-containing pheomelanin because the X-ray absorption coefficient is proportional to the fourth power of the atomic number (Z). Notably, selenium is an essential micronutrient, with the amino acid selenocysteine being genetically encoded in 25 natural human proteins. Therefore, we hypothesize that selenomelanin exists in nature, where it provides superior ionizing radiation protection to organisms compared to known melanins. Here we introduce this novel selenium analogue of pheomelanin through chemical and biosynthetic routes using selenocystine as a feedstock. The resulting selenomelanin is a structural mimic of pheomelanin. We found selenomelanin effectively prevented neonatal human epidermal keratinocytes (NHEK) from G2/M phase arrest under high-dose X-ray irradiation. Provocatively, this beneficial role of selenomelanin points to it as a sixth variety of yet to be discovered natural melanin.


Assuntos
Melaninas/química , Compostos Organosselênicos/química , Selênio/química , Humanos , Queratinócitos/efeitos dos fármacos , Melaninas/farmacologia , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/farmacologia , Tamanho da Partícula , Selênio/farmacologia , Propriedades de Superfície , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...