Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 5818, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199689

RESUMO

Cholesterol-dependent cytolysins (CDCs) are pore-forming proteins that serve as major virulence factors for pathogenic bacteria. They target eukaryotic cells using different mechanisms, but all require the presence of cholesterol to pierce lipid bilayers. How CDCs use cholesterol to selectively lyse cells is essential for understanding virulence strategies of several pathogenic bacteria, and for repurposing CDCs to kill new cellular targets. Here we address that question by trapping an early state of pore formation for the CDC intermedilysin, bound to the human immune receptor CD59 in a nanodisc model membrane. Our cryo electron microscopy map reveals structural transitions required for oligomerization, which include the lateral movement of a key amphipathic helix. We demonstrate that the charge of this helix is crucial for tuning lytic activity of CDCs. Furthermore, we discover modifications that overcome the requirement of cholesterol for membrane rupture, which may facilitate engineering the target-cell specificity of pore-forming proteins.


Assuntos
Membrana Celular/metabolismo , Citotoxinas/química , Citotoxinas/metabolismo , Antígenos CD59/metabolismo , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Citotoxinas/genética , Humanos , Modelos Biológicos , Modelos Moleculares , Mutação/genética , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
2.
Nat Commun ; 9(1): 5316, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552328

RESUMO

The membrane attack complex (MAC) is one of the immune system's first responders. Complement proteins assemble on target membranes to form pores that lyse pathogens and impact tissue homeostasis of self-cells. How MAC disrupts the membrane barrier remains unclear. Here we use electron cryo-microscopy and flicker spectroscopy to show that MAC interacts with lipid bilayers in two distinct ways. Whereas C6 and C7 associate with the outer leaflet and reduce the energy for membrane bending, C8 and C9 traverse the bilayer increasing membrane rigidity. CryoEM reconstructions reveal plasticity of the MAC pore and demonstrate how C5b6 acts as a platform, directing assembly of a giant ß-barrel whose structure is supported by a glycan scaffold. Our work provides a structural basis for understanding how ß-pore forming proteins breach the membrane and reveals a mechanism for how MAC kills pathogens and regulates cell functions.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento/química , Complexo de Ataque à Membrana do Sistema Complemento/ultraestrutura , Microscopia Crioeletrônica/métodos , Bicamadas Lipídicas/química , Complemento C6/química , Complemento C6/metabolismo , Complemento C6/ultraestrutura , Complemento C7/química , Complemento C7/metabolismo , Complemento C7/ultraestrutura , Complemento C8/química , Complemento C8/metabolismo , Complemento C8/ultraestrutura , Complemento C9/química , Complemento C9/metabolismo , Complemento C9/ultraestrutura , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Bicamadas Lipídicas/metabolismo , Lipossomos , Modelos Moleculares , Polissacarídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Análise Espectral/métodos
3.
Curr Opin Struct Biol ; 52: 41-49, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30125772

RESUMO

Deployed by both hosts and pathogens, ß-pore-forming proteins (ß-PFPs) rupture membranes and lyse target cells. Soluble protein monomers oligomerize on the lipid bilayer where they undergo dramatic structural rearrangements, resulting in a transmembrane ß-barrel pore. Advances in electron cryo-microscopy (cryoEM) sample preparation, image detection, and computational algorithms have led to a number of recent structures that reveal a molecular mechanism of pore formation in atomic detail.


Assuntos
Microscopia Crioeletrônica , Modelos Moleculares , Proteínas Citotóxicas Formadoras de Poros/química , Antígenos de Bactérias/química , Toxinas Bacterianas/química , Microscopia Crioeletrônica/métodos , Humanos , Conformação Proteica
4.
Sci Rep ; 6: 38446, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27910935

RESUMO

The plasma membrane provides an essential barrier, shielding a cell from the pressures of its external environment. Pore-forming proteins, deployed by both hosts and pathogens alike, breach this barrier to lyse target cells. Intermedilysin is a cholesterol-dependent cytolysin that requires the human immune receptor CD59, in addition to cholesterol, to form giant ß-barrel pores in host membranes. Here we integrate biochemical assays with electron microscopy and atomic force microscopy to distinguish the roles of these two receptors in mediating structural transitions of pore formation. CD59 is required for the specific coordination of intermedilysin (ILY) monomers and for triggering collapse of an oligomeric prepore. Movement of Domain 2 with respect to Domain 3 of ILY is essential for forming a late prepore intermediate that releases CD59, while the role of cholesterol may be limited to insertion of the transmembrane segments. Together these data define a structural timeline for ILY pore formation and suggest a mechanism that is relevant to understanding other pore-forming toxins that also require CD59.


Assuntos
Bacteriocinas/metabolismo , Antígenos CD59/metabolismo , Colesterol/metabolismo , Interações Hospedeiro-Patógeno , Bacteriocinas/química , Bacteriocinas/genética , Sítios de Ligação , Antígenos CD59/química , Antígenos CD59/genética , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Colesterol/química , Humanos , Microscopia de Força Atômica , Porinas/química , Porinas/genética , Porinas/metabolismo , Domínios Proteicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...