Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biomacromolecules ; 24(12): 5807-5822, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37984848

RESUMO

In recent years, there has been growing attention to designing synthetic protocells, capable of mimicking micrometric and multicompartmental structures and highly complex physicochemical and biological processes with spatiotemporal control. Controlling metabolism-like cascade reactions in coacervate protocells is still challenging since signal transduction has to be involved in sequential and parallelized actions mediated by a pH change. Herein, we report the hierarchical construction of membraneless and multicompartmentalized protocells composed of (i) a cytosol-like scaffold based on complex coacervate droplets stable under flow conditions, (ii) enzyme-active artificial organelles and a substrate nanoreservoir capable of triggering a cascade reaction between them in response to a pH increase, and (iii) a signal transduction component based on the urease enzyme capable of the conversion of an exogenous biological fuel (urea) into an endogenous signal (ammonia and pH increase). Overall, this strategy allows a synergistic communication between their components within the membraneless and multicompartment protocells and, thus, metabolism-like enzymatic cascade reactions. This signal communication is transmitted through a scaffold protocell from an "inactive state" (nonfluorescent protocell) to an "active state" (fluorescent protocell capable of consuming stored metabolites).


Assuntos
Células Artificiais , Células Artificiais/química , Células Artificiais/metabolismo , Transdução de Sinais
3.
Biomacromolecules ; 24(12): 5797-5806, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37939018

RESUMO

Amyloid ß peptide can aggregate into thin ß-sheet fibrils or plaques deposited on the extracellular matrix, which is the hallmark of Alzheimer's disease. Multifunctional macromolecular structures play an important role in inhibiting the aggregate formation of amyloidogenic materials and thus are promising candidates with antiamyloidogenic characteristics for the development of next-generation therapeutics. In this study, we evaluate how small differences in the dendritic topology of these structures influence their antiamyloidogenic activity by the comparison of "perfectly dendritic" and "pseudodendritic" macromolecules, both decorated with mannose units. Their compactness, the position of surface units, and the size of glyco-architectures influence their antiamyloidogenic activity against Aß 40, a major component of amyloid plaques. For the advanced analysis of the aggregation of the Aß peptide, we introduce asymmetric flow field flow fractionation as a suitable method for the quantification of large and delicate structures. This alternative method focuses on the quantification of complex aggregates of Aß 40 and glycodendrimer/glyco-pseudodendrimer over different time intervals of incubation, showing a good correlation to ThT assay and CD spectroscopy results. Kinetic studies of the second-generation glyco-pseudodendrimer revealed maximum inhibition of Aß 40 aggregates, verified with atomic force microscopy. The second-generation glyco-pseudodendrimer shows the best antiamyloidogenic properties confirming that macromolecular conformation in combination with optimal functional group distribution is the key to its performance. These molecular properties were validated and confirmed by molecular dynamics simulation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/química , Cinética , Simulação de Dinâmica Molecular , Estrutura Molecular , Substâncias Macromoleculares , Fragmentos de Peptídeos/química
4.
Nat Nanotechnol ; 18(12): 1463-1473, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37550574

RESUMO

Three-dimensional cell and organoid cultures rely on the mechanical support of viscoelastic matrices. However, commonly used matrix materials lack control over key cell-instructive properties. Here we report on fully synthetic hydrogels based on DNA libraries that self-assemble with ultrahigh-molecular-weight polymers, forming a dynamic DNA-crosslinked matrix (DyNAtrix). DyNAtrix enables computationally predictable and systematic control over its viscoelasticity, thermodynamic and kinetic parameters by changing DNA sequence information. Adjustable heat activation allows homogeneous embedding of mammalian cells. Intriguingly, stress-relaxation times can be tuned over four orders of magnitude, recapitulating mechanical characteristics of living tissues. DyNAtrix is self-healing, printable, exhibits high stability, cyto- and haemocompatibility, and controllable degradation. DyNAtrix-based cultures of human mesenchymal stromal cells, pluripotent stem cells, canine kidney cysts and human trophoblast organoids show high viability, proliferation and morphogenesis. DyNAtrix thus represents a programmable and versatile precision matrix for advanced approaches to biomechanics, biophysics and tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Organoides , Animais , Cães , Humanos , Hidrogéis , DNA , Mamíferos
5.
Biomacromolecules ; 24(6): 2489-2500, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37253064

RESUMO

Structures and functions of eukaryotic cells with an outer permeable membrane, a cytoskeleton, functional organelles, and motility can be mimicked by giant multicompartment protocells containing various synthetic organelles. Herein, two kinds of artificial organelles with stimuli-triggered regulation ability, glucose oxidase-(GOx)-loaded pH-responsive polymersomes A (GOx-Psomes A) and urease-loaded pH-responsive polymersomes B (Urease-Psomes B), and a pH-sensor (Dextran-FITC) are encapsulated into proteinosomes via the Pickering emulsion method. Thus, a polymersomes-in-proteinosome system is constructed which is able to probe biomimetic pH homeostasis. Alternating fuels (glucose or urea) introduced from outside the protocell penetrate the membrane of proteinosomes and enter into GOx-Psomes A and Urease-Psomes B to produce chemical signals (gluconic acid or ammonia) resulting in pH-feedback loops (pH jump and pH drop). This will counteract the catalytic "switch on" or "switch off" of enzyme-loaded Psomes A and B owing to their different pH-responsive membranes. Dextran-FITC in the proteinosome allows self-monitoring of slight pH fluctuations in the lumen of protocells. Overall, this approach shows heterogeneous polymersome-in-proteinosome architectures with sophisticated features such as input-regulated pH changes mediated by negative and positive feedback in loops and cytosolic pH self-monitoring, features that are imperative for advanced protocell design.


Assuntos
Dextranos , Urease , Citosol , Fluoresceína-5-Isotiocianato , Dextranos/química , Retroalimentação , Biomimética , Concentração de Íons de Hidrogênio
6.
Adv Sci (Weinh) ; 10(17): e2207214, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37076948

RESUMO

Defects in cellular protein/enzyme encoding or even in organelles are responsible for many diseases. For instance, dysfunctional lysosome or macrophage activity results in the unwanted accumulation of biomolecules and pathogens implicated in autoimmune, neurodegenerative, and metabolic disorders. Enzyme replacement therapy (ERT) is a medical treatment that replaces an enzyme that is deficient or absent in the body but suffers from short lifetime of the enzymes. Here, this work proposes the fabrication of two different pH-responsive and crosslinked trypsin-loaded polymersomes as protecting enzyme carriers mimicking artificial organelles (AOs). They allow the enzymatic degradation of biomolecules to mimic simplified lysosomal function at acidic pH and macrophage functions at physiological pH. For optimal working of digesting AOs in different environments, pH and salt composition are considered the key parameters, since they define the permeability of the membrane of the polymersomes and the access of model pathogens to the loaded trypsin. Thus, this work demonstrates environmentally controlled biomolecule digestion by trypsin-loaded polymersomes also under simulated physiological fluids, allowing a prolonged therapeutic window due to protection of the enzyme in the AOs. This enables the application of AOs in the fields of biomimetic therapeutics, specifically in ERT for dysfunctional lysosomal diseases.


Assuntos
Células Artificiais , Tripsina/metabolismo , Lisossomos , Organelas , Proteínas/metabolismo
7.
Macromol Rapid Commun ; 44(16): e2200885, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36755359

RESUMO

Various cellular functions are successfully mimicked, opening the door to the next generation of therapeutic approaches and systems biology. Herein, the first steps are taken toward the construction of artificial organelles for mimicking cell communication by docking and undocking of cargo in the membrane of swollen artificial organelles. Stimuli-responsive and crosslinked polymeric vesicles are used to allow docking processes at acidic pH at which ferrocene units in the swollen membrane state can undergo desired specific host-guest interaction using ß-cyclodextrin as model cargo. The release of the cargo mediated by two different enzymes, glucose oxidase and α-amylase, is investigated, triggered by distinct enzymatic undocking mechanisms. Different release times for a useful transport are shown that can be adapted to different communication pathways. In addition, Förster resonance energy transfer (FRET) experiments further support the hypotheses of host-guest inclusion complexation formation and their time-dependent breakdown. This work paves a way to a platform based on polymeric vesicles for synthetic biology, cell functions mimicking, and the construction of multifunctional cargo delivery system.


Assuntos
Células Artificiais , Polímeros
8.
Biomacromolecules ; 23(11): 4655-4667, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36215725

RESUMO

The development of compartments for the design of cascade reactions in a local space requires a selective spatiotemporal control. The combination of enzyme-loaded polymersomes with enzymelike units shows a great potential in further refining the diffusion barrier and the type of reactions in nanoreactors. Herein, pH-responsive and ferrocene-containing block copolymers were synthesized to realize pH-stable and multiresponsive polymersomes. Permeable membrane, peroxidase-like behavior induced by the redox-responsive ferrocene moieties and release properties were validated using cyclovoltammetry, dye TMB assay, and rupture of host-guest interactions with ß-cyclodextrin, respectively. Due to the incorporation of different block copolymers, the membrane permeability of glucose oxidase-loaded polymersomes was changed by increasing extracellular glucose concentration and in TMB assay, allowing for the chemoenzymatic cascade reaction. This study presents a potent synthetic, multiresponsive nanoreactor platform with tunable (e.g., redox-responsive) membrane properties for potential application in therapeutics.


Assuntos
Peróxido de Hidrogênio , Polímeros , Metalocenos , Concentração de Íons de Hidrogênio , Polímeros/farmacologia , Oxirredução , Peroxidases
9.
Biomacromolecules ; 23(9): 3648-3662, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35981858

RESUMO

Most sophisticated biological functions and features of cells are based on self-organization, and the coordination and connection between their cell organelles determines their key functions. Therefore, spatially ordered and controllable self-assembly of polymersomes to construct clusters to simulate complex intracellular biological functions has attracted widespread attention. Here, we present a simple one-step copper-free click strategy to cross-link nanoscale pH-responsive and photo-cross-linked polymersomes (less than 100 nm) to micron-level clusters (more than 90% in 0.5-2 µm range). Various influencing factors in the clustering process and subsequent purification methods were studied to obtain optimal clustered polymeric vesicles. Even when polymeric vesicles separately loaded with different enzymes (glucose oxidase and myoglobin) are coclustered, the overall permeability of the clusters can still be regulated through tuning the pH values on demand. Compared with simple blending of those enzyme-loaded polymersomes, the rate of enzymatic cascade reaction increased significantly due to the interconnected complex microstructure established. The connection of catalytic nanocompartments into clusters confining different enzymes of a cascade reaction provides an excellent platform for the development of artificial systems mimicking natural organelles or cells.


Assuntos
Células Artificiais , Análise por Conglomerados , Glucose Oxidase , Concentração de Íons de Hidrogênio , Polímeros/química
10.
Chem Sci ; 12(41): 13848-13856, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34760170

RESUMO

Polymer-based protein engineering has enabled the synthesis of a variety of protein-polymer conjugates that are widely applicable in therapeutic, diagnostic and biotechnological industries. Accurate characterizations of physical-chemical properties, in particular, molar masses, sizes, composition and their dispersities are critical parameters that determine the functionality and conformation of protein-polymer conjugates and are important for creating reproducible manufacturing processes. Most of the current characterization techniques suffer from fundamental limitations and do not provide an accurate understanding of a sample's true nature. In this paper, we demonstrate the advantage of asymmetrical flow field-flow fractionation (AF4) coupled with multiple detectors for the characterization of a library of complex, zwitterionic and neutral protein-polymer conjugates. This method allows for determination of intrinsic physical properties of protein-polymer chimeras from a single, rapid measurement.

11.
Macromol Biosci ; 21(10): e2100102, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34355506

RESUMO

Synthetic platforms for mimicking artificial organelles or for designing multivalent protein therapeutics for targeting cell surface, extracellular matrix, and tissues are in the focus of this study. Furthermore, the availability of a multi-functionalized and stimuli-responsive carrier system is required that can be used for sequential in situ and/or post loading of different proteins combined with post-functionalization steps. Until now, polymersomes exhibit excellent key characteristics to fulfill those requirements, which allow specific transport of proteins and the integration of proteins in different locations of polymeric vesicles. Herein, different approaches to fabricate multivalent protein-loaded, pH-responsive, and pH-stable polymersomes are shown, where a combination of therapeutic action and targeting can be achieved, by first choosing two model proteins such as human serum albumin and avidin. Validation of the molecular parameters of the multivalent biohybrids is performed by dynamic light scattering, cryo-TEM, fluorescence spectroscopy, and asymmetrical flow-field flow fractionation combined with light scattering techniques. To demonstrate targeting functions of protein-loaded polymersomes, avidin post-functionalized polymersomes are used for the molecular recognition of biotinylated cell surface receptors. These versatile protein-loaded polymersomes present new opportunities for designing sophisticated biomolecular nanoobjects in the field of (extracellular matrix) protein therapeutics.


Assuntos
Avidina , Polímeros , Humanos , Concentração de Íons de Hidrogênio , Polímeros/química
12.
Chem Commun (Camb) ; 57(65): 8019-8022, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34287435

RESUMO

Feedback-controlled detection of subtle changes of extracellular biomolecules as known from cells is also needed in protocells. Artificial organelles, located in protocells, detect the small variation in pH which is triggered by different amounts of invading glucose, converted by glucose-oxidase into gluconic acid. The approach paves the way for using pH fluctuations-detecting artificial organelles in the lumen of protocells.


Assuntos
Células Artificiais/química , Glucose/análise , Fosfatase Alcalina/química , Carbocianinas/química , Catalase/química , Fluoresceínas/química , Corantes Fluorescentes/química , Glucose/química , Glucose Oxidase/química , Concentração de Íons de Hidrogênio , Microscopia Confocal , Microscopia de Fluorescência , Oxirredução
13.
Adv Sci (Weinh) ; 8(11): e2004263, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34105298

RESUMO

The challenge of effective integration and use of artificial organelles with orthogonal-responsive membranes and their communication in eukaryotic protocells is to understand the intrinsic membrane characteristics. Here, a novel photo-crosslinked and pH-responsive polymersome (Psome B) with 2-(N,N'-diisopropylamino)ethyl units in the membrane and its respective Avidin-Psome B hybrids, are reported as good candidates for artificial organelles. Biotinylated (macro)molecules are able to dock and diffuse into Avidin-Psome B to carry out biological activity in a pH- and size-dependent manner. Combined with another polymersome (Psome A) with 2-(N,N'-diethylamino)ethyl units in the membrane, two different pH-responsive polymersomes for mimicking different organelles in one protocell system are reported. The different intrinsic docking and diffusion processes of cargo (macro)molecules through the membranes of coexisting Psome A and B are pH-dependent as confirmed using pH titration-dynamic light scattering (DLS). Psome A and B show separated "open", "closing/opening", and "closed" states at various pH ranges with different membrane permeability. The results pave the way for the construction of multicompartmentalized protocells with controlled communications between different artificial organelles.


Assuntos
Células Artificiais/química , Fenômenos Biofísicos , Membrana Celular/química , Avidina/química , Difusão Dinâmica da Luz , Concentração de Íons de Hidrogênio , Polímeros/química , Propriedades de Superfície/efeitos dos fármacos
14.
Bioconjug Chem ; 32(4): 821-832, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33784809

RESUMO

Even the most advanced protein-polymer conjugate therapeutics do not eliminate antibody-protein and receptor-protein recognition. Next-generation bioconjugate drugs will need to replace stochastic selection with rational design to select desirable levels of protein-protein interaction while retaining function. The "Holy Grail" for rational design would be to generate functional enzymes that are fully catalytic with small molecule substrates while eliminating interaction between the protein surface and larger molecules. Using chymotrypsin, an important enzyme that is used to treat pancreatic insufficiency, we have designed a series of molecular chimeras with varied grafting densities and shapes. Guided by molecular dynamic simulations and next-generation molecular chimera characterization with asymmetric flow field-flow fractionation chromatography, we grew linear, branched, and comb-shaped architectures from the surface of the protein by atom-transfer radical polymerization. Comb-shaped polymers, grafted from the surface of chymotrypsin, completely prevented enzyme inhibition with protein inhibitors without sacrificing the ability of the enzyme to catalyze the hydrolysis of a peptide substrate. Asymmetric flow field-flow fractionation coupled with multiangle laser light scattering including dynamic light scattering showed that nanoarmor designed with comb-shaped polymers was particularly compact and spherical. The polymer structure significantly increased protein stability and reduced protein-protein interactions. Atomistic molecular dynamic simulations predicted that a dense nanoarmor with long-armed comb-shaped polymer would act as an almost perfect molecular sieve to filter large ligands from substrates. Surprisingly, a conjugate that was composed of 99% polymer was needed before the elimination of protein-protein interactions.


Assuntos
Polimerização , Polímeros/química , Proteínas/química , Fracionamento por Campo e Fluxo , Ligantes , Luz , Simulação de Dinâmica Molecular , Ligação Proteica , Espalhamento de Radiação
15.
J Control Release ; 332: 594-607, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33737203

RESUMO

Liver fibrosis affects millions of people worldwide and is rising vastly over the past decades. With no viable therapies available, liver transplantation is the only curative treatment for advanced diseased patients. Excessive accumulation of aberrant extracellular matrix (ECM) proteins, mostly collagens, produced by activated hepatic stellate cells (HSCs), is a hallmark of liver fibrosis. Several studies have suggested an inverse correlation between collagen-I degrading matrix metalloproteinase-1 (MMP-1) serum levels and liver fibrosis progression highlighting reduced MMP-1 levels are associated with poor disease prognosis in patients with liver fibrosis. We hypothesized that delivery of MMP-1 might potentiate collagen degradation and attenuate fibrosis development. In this study, we report a novel approach for the delivery of MMP-1 using MMP-1 decorated polymersomes (MMPsomes), as a surface-active vesicle-based ECM therapeutic, for the treatment of liver fibrosis. The storage-stable and enzymatically active MMPsomes were fabricated by a post-loading of Psomes with MMP-1. MMPsomes were extensively characterized for the physicochemical properties, MMP-1 surface localization, stability, enzymatic activity, and biological effects. Dose-dependent effects of MMP-1, and effects of MMPsomes versus MMP-1, empty polymersomes (Psomes) and MMP-1 + Psomes on gene and protein expression of collagen-I, MMP-1/TIMP-1 ratio, migration and cell viability were examined in TGFß-activated human HSCs. Finally, the therapeutic effects of MMPsomes, compared to MMP-1, were evaluated in vivo in carbon-tetrachloride (CCl4)-induced early liver fibrosis mouse model. MMPsomes exhibited favorable physicochemical properties, MMP-1 surface localization and improved therapeutic efficacy in TGFß-activated human HSCs in vitro. In CCl4-induced early liver fibrosis mouse model, MMPsomes inhibited intra-hepatic collagen-I (ECM marker, indicating early liver fibrosis) and F4/80 (marker for macrophages, indicating liver inflammation) expression. In conclusion, our results demonstrate an innovative approach of MMP-1 delivery, using surface-decorated MMPsomes, for alleviating liver fibrosis.


Assuntos
Metaloproteinase 1 da Matriz , Metaloproteinase 2 da Matriz , Colágeno , Matriz Extracelular , Células Estreladas do Fígado , Humanos , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Metaloproteinase 13 da Matriz
16.
Int J Biol Macromol ; 171: 242-261, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33418043

RESUMO

In recent years, chitosan has attracted considerable interest in many fields due to its sufficient charge density under biological, non-hazardous conditions. Since chitosan originates from natural resources and has two different monomer units, its characterization must be carried out in a goal-oriented and precise manner. This work focuses on the characterization of chitosans most important parameters - solubility, crystallinity, degree of deacetylation (DD) and molecular weight - in a simple and convenient way. The DD was determined using Nuclear Magnetic Resonance spectroscopy (NMR), Particle Charge Detection (PCD), Fourier Transform Infrared spectroscopy (FTIR), CHN elemental analysis (CHN-EA) and conductometric/potentiometric titration with special attention to its physical state as solid or liquid. Investigation of DD by FTIR was successfully determined by calculating peak heights, peak areas and peak deconvolution from a linear combination of Gaussian and Lorentzian functions. Asymmetrical flow field flow fractionation with light scattering detection (AF4-LS) was applied in order to calculate molar masses and radii. In addition, pH-potentiometric titrations demonstrated a reproducible displacement of the point of zero charge (PZC) in form of a hysteresis depending on the titration direction. The DD affects the crystallinity, which was determined by deconvolution of the crystalline and amorphous domains.


Assuntos
Quitosana/química , Acetilação , Cristalização , Fracionamento por Campo e Fluxo/métodos , Ressonância Magnética Nuclear Biomolecular , Potenciometria , Reprodutibilidade dos Testes , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Viscosidade , Difração de Raios X
17.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33384328

RESUMO

Exosomes are emerging as ideal drug delivery vehicles due to their biological origin and ability to transfer cargo between cells. However, rapid clearance of exogenous exosomes from the circulation as well as aggregation of exosomes and shedding of surface proteins during storage limit their clinical translation. Here, we demonstrate highly controlled and reversible functionalization of exosome surfaces with well-defined polymers that modulate the exosome's physiochemical and pharmacokinetic properties. Using cholesterol-modified DNA tethers and complementary DNA block copolymers, exosome surfaces were engineered with different biocompatible polymers. Additionally, polymers were directly grafted from the exosome surface using biocompatible photo-mediated atom transfer radical polymerization (ATRP). These exosome polymer hybrids (EPHs) exhibited enhanced stability under various storage conditions and in the presence of proteolytic enzymes. Tuning of the polymer length and surface loading allowed precise control over exosome surface interactions, cellular uptake, and preserved bioactivity. EPHs show fourfold higher blood circulation time without altering tissue distribution profiles. Our results highlight the potential of precise nanoengineering of exosomes toward developing advanced drug and therapeutic delivery systems using modern ATRP methods.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Exossomos/química , Engenharia de Proteínas/métodos , Humanos , Polimerização , Polímeros/química , Propriedades de Superfície
18.
Artigo em Inglês | MEDLINE | ID: mdl-33373897

RESUMO

Artificial vesicles made of block copolymers, so-called polymersomes, represent a versatile chassis for the creation of functionalized nanocompartments with a wide range of biotechnological applications. The specific application depends on the biomolecules - usually proteins - that are positioned in the interior, in the membrane or on the surface of the vesicles. However, not all added proteins are integrated into the vesicles during the usual manufacturing processes of polymersomes. Excess proteins must therefore be removed. The separation techniques currently used for this, however, are associated with decisive disadvantages, such as damaged vesicles, long process times, or small sample volumes that can be processed. To overcome these drawbacks, we investigated the applicability of Capto™ Core 700 resin for polymersome purification. Polymersomes were not damaged or otherwise affected by passage through the column verified by hollow fiber flow field flow fractionation technique. Using three proteins with divergent physico-chemical properties as examples, it was demonstrated that different types of unentrapped proteins were efficiently removed from polymersome dispersions. The dynamic binding capacities in the presence of polymersomes varied between 9.5 and 16.5 mg per mL resin for the proteins applied. The technique can be used for small and large sample volumes alike. In addition, it can be used without special laboratory equipment. This adds a new and easy-to-use purification method for polymer vesicles to the repertoire that will also facilitate the large-scale production of functionalized polymersomes.


Assuntos
Cromatografia Líquida/métodos , Membranas Artificiais , Polímeros/química , Proteínas/análise , Proteínas/química , Proteínas/isolamento & purificação
19.
Small ; 17(7): e2005749, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33373089

RESUMO

The eukaryotic cell is a smart compartment containing an outer permeable membrane, a cytoskeleton, and functional organelles, presenting part structures for life. The integration of membrane-containing artificial organelles (=polymersomes) into a large microcompartment is a key step towards the establishment of exquisite cellular biomimetics with different membrane properties. Herein, an efficient way to construct a hierarchical multicompartment composed of a hydrogel-filled proteinosome hybrid structure with an outer homogeneous membrane, a smart cytoskeleton-like scaffold, and polymersomes is designed. Specially, this hybrid structure creates a micro-environment for pH-responsive polymersomes to execute a desired substance transport upon response to biological stimuli. Within the dynamic pH-stable skeleton of the protein hydrogels, polymersomes with loaded PEGylated insulin biomacromolecules demonstrate a pH-responsive reversible swelling-deswelling and a desirable, on-demand cargo release which is induced by the enzymatic oxidation of glucose to gluconic acid. This stimulus responsive behavior is realized by tunable on/off states through protonation of the polymersomes membrane under the enzymatic reaction of glucose oxidase, integrated in the skeleton of protein hydrogels. The integration of polymersomes-based hybrid structure into the proteinosome compartment and the stimuli-response on enzyme reactions fulfills the requirements of eukaryotic cell biomimetics in complex architectures and allows mimicking cellular transportation processes.


Assuntos
Biomimética , Polímeros , Células Eucarióticas , Glucose Oxidase , Hidrogéis
20.
Anal Sci Adv ; 2(3-4): 95-108, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38716446

RESUMO

Broad diversity and heterogeneity are inherently showcased by both natural and synthetic macromolecular structures. The high application potential for such structures and their combinations calls for novel analytical approaches that allow for comprehensive characterization and a full understanding of their complex composition. This review gives an overview of recent advances in designing and fabricating bioconjugated and self-assembled polymer structures, and introduces adequate characterization protocols for sufficient elucidation of their specific molecular properties. Possible pitfalls in their analysis are demonstrated, and potential alternatives are discussed. The primary focus is on addressing the highlights, and future prospects of applying field-flow fractionation coupled and/or hyphenated to different detection methods as a powerful separation and analytical technique for bioconjugate and self-assembled nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...