Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585812

RESUMO

Reducing fibrous aggregates of protein tau is a possible strategy for halting progression of Alzheimer's disease (AD). Previously we found that in vitro the D-peptide D-TLKIVWC disassembles tau fibrils from AD brains (AD-tau) into benign segments with no energy source present beyond ambient thermal agitation. This disassembly by a short peptide was unexpected, given that AD-tau is sufficiently stable to withstand disassembly in boiling SDS detergent. To consider D peptide-mediated disassembly as a potential therapeutic for AD, it is essential to understand the mechanism and energy source of the disassembly action. We find assembly of D-peptides into amyloid-like fibrils is essential for tau fibril disassembly. Cryo-EM and atomic force microscopy reveal that these D-peptide fibrils have a right-handed twist and embrace tau fibrils which have a left-handed twist. In binding to the AD-tau fibril, the oppositely twisted D-peptide fibril produces a strain, which is relieved by disassembly of both fibrils. This strain-relief mechanism appears to operate in other examples of amyloid fibril disassembly and provides a new direction for the development of first-in-class therapeutics for amyloid diseases.

2.
Structure ; 32(6): 662-678.e8, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38508190

RESUMO

J-domain protein (JDP) molecular chaperones have emerged as central players that maintain a healthy proteome. The diverse members of the JDP family function as monomers/dimers and a small subset assemble into micron-sized oligomers. The oligomeric JDP members have eluded structural characterization due to their low-complexity, intrinsically disordered middle domains. This in turn, obscures the biological significance of these larger oligomers in protein folding processes. Here, we identified a short, aromatic motif within DNAJB8 that drives self-assembly through π-π stacking and determined its X-ray structure. We show that mutations in the motif disrupt DNAJB8 oligomerization in vitro and in cells. DNAJB8 variants that are unable to assemble bind to misfolded tau seeds more specifically and retain capacity to reduce protein aggregation in vitro and in cells. We propose a new model for DNAJB8 function in which the sequences in the low-complexity domains play distinct roles in assembly and substrate activity.


Assuntos
Proteínas de Choque Térmico HSP40 , Multimerização Proteica , Humanos , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Modelos Moleculares , Motivos de Aminoácidos , Cristalografia por Raios X , Ligação Proteica , Proteínas tau/metabolismo , Proteínas tau/química , Proteínas tau/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutação , Dobramento de Proteína
3.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36945632

RESUMO

J-domain protein (JDP) molecular chaperones have emerged as central players that maintain a healthy proteome. The diverse members of the JDP family function as monomers/dimers and a small subset assemble into micron-sized oligomers. The oligomeric JDP members have eluded structural characterization due to their low-complexity, intrinsically disordered middle domains. This in turn, obscures the biological significance of these larger oligomers in protein folding processes. Here, we identified a short, aromatic motif within DNAJB8, that drives self-assembly through pi-pi stacking and determined its X-ray structure. We show that mutations in the motif disrupt DNAJB8 oligomerization in vitro and in cells. DNAJB8 variants that are unable to assemble bind to misfolded tau seeds more specifically and retain capacity to reduce protein aggregation in vitro and in cells. We propose a new model for DNAJB8 function in which the sequences in the low-complexity domains play distinct roles in assembly and substrate activity.

4.
J Biol Chem ; 300(2): 105531, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072051

RESUMO

Heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2) is a human ribonucleoprotein that transports RNA to designated locations for translation via its ability to phase separate. Its mutated form, D290V, is implicated in multisystem proteinopathy known to afflict two families, mainly with myopathy and Paget's disease of bone. Here, we investigate this mutant form of hnRNPA2 by determining cryo-EM structures of the recombinant D290V low complexity domain. We find that the mutant form of hnRNPA2 differs from the WT fibrils in four ways. In contrast to the WT fibrils, the PY-nuclear localization signals in the fibril cores of all three mutant polymorphs are less accessible to chaperones. Also, the mutant fibrils are more stable than WT fibrils as judged by phase separation, thermal stability, and energetic calculations. Similar to other pathogenic amyloids, the mutant fibrils are polymorphic. Thus, these structures offer evidence to explain how a D-to-V missense mutation diverts the assembly of reversible, functional amyloid-like fibrils into the assembly of pathogenic amyloid, and may shed light on analogous conversions occurring in other ribonucleoproteins that lead to neurological diseases such as amyotrophic lateral sclerosis and frontotemporal dementia.


Assuntos
Microscopia Crioeletrônica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Modelos Moleculares , Humanos , Separação de Fases , Domínios Proteicos , Mutação , Concentração de Íons de Hidrogênio , Estabilidade Proteica , Estrutura Terciária de Proteína , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo
5.
PNAS Nexus ; 2(12): pgad402, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38077690

RESUMO

We previously presented a bioinformatic method for identifying diseases that arise from a mutation in a protein's low-complexity domain that drives the protein into pathogenic amyloid fibrils. One protein so identified was the tropomyosin-receptor kinase-fused gene protein (TRK-fused gene protein or TFG). Mutations in TFG are associated with degenerative neurological conditions. Here, we present experimental evidence that confirms our prediction that these conditions are amyloid-related. We find that the low-complexity domain of TFG containing the disease-related mutations G269V or P285L forms amyloid fibrils, and we determine their structures using cryo-electron microscopy (cryo-EM). These structures are unmistakably amyloid in nature and confirm the propensity of the mutant TFG low-complexity domain to form amyloid fibrils. Also, despite resulting from a pathogenic mutation, the fibril structures bear some similarities to other amyloid structures that are thought to be nonpathogenic and even functional, but there are other factors that support these structures' relevance to disease, including an increased propensity to form amyloid compared with the wild-type sequence, structure-stabilizing influence from the mutant residues themselves, and double-protofilament amyloid cores. Our findings elucidate two potentially disease-relevant structures of a previously unknown amyloid and also show how the structural features of pathogenic amyloid fibrils may not conform to the features commonly associated with pathogenicity.

6.
Proc Natl Acad Sci U S A ; 120(41): e2300258120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37801475

RESUMO

Despite much effort, antibody therapies for Alzheimer's disease (AD) have shown limited efficacy. Challenges to the rational design of effective antibodies include the difficulty of achieving specific affinity to critical targets, poor expression, and antibody aggregation caused by buried charges and unstructured loops. To overcome these challenges, we grafted previously determined sequences of fibril-capping amyloid inhibitors onto a camel heavy chain antibody scaffold. These sequences were designed to cap fibrils of tau, known to form the neurofibrillary tangles of AD, thereby preventing fibril elongation. The nanobodies grafted with capping inhibitors blocked tau aggregation in biosensor cells seeded with postmortem brain extracts from AD and progressive supranuclear palsy (PSP) patients. The tau capping nanobody inhibitors also blocked seeding by recombinant tau oligomers. Another challenge to the design of effective antibodies is their poor blood-brain barrier (BBB) penetration. In this study, we also designed a bispecific nanobody composed of a nanobody that targets a receptor on the BBB and a tau capping nanobody inhibitor, conjoined by a flexible linker. We provide evidence that the bispecific nanobody improved BBB penetration over the tau capping inhibitor alone after intravenous administration in mice. Our results suggest that the design of synthetic antibodies that target sequences that drive protein aggregation may be a promising approach to inhibit the prion-like seeding of tau and other proteins involved in AD and related proteinopathies.


Assuntos
Doença de Alzheimer , Anticorpos de Domínio Único , Paralisia Supranuclear Progressiva , Humanos , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/metabolismo , Emaranhados Neurofibrilares/metabolismo , Paralisia Supranuclear Progressiva/metabolismo , Anticorpos/metabolismo , Encéfalo/metabolismo
7.
Nat Commun ; 14(1): 2379, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185252

RESUMO

The self-assembly of the Nucleocapsid protein (NCAP) of SARS-CoV-2 is crucial for its function. Computational analysis of the amino acid sequence of NCAP reveals low-complexity domains (LCDs) akin to LCDs in other proteins known to self-assemble as phase separation droplets and amyloid fibrils. Previous reports have described NCAP's propensity to phase-separate. Here we show that the central LCD of NCAP is capable of both, phase separation and amyloid formation. Within this central LCD we identified three adhesive segments and determined the atomic structure of the fibrils formed by each. Those structures guided the design of G12, a peptide that interferes with the self-assembly of NCAP and demonstrates antiviral activity in SARS-CoV-2 infected cells. Our work, therefore, demonstrates the amyloid form of the central LCD of NCAP and suggests that amyloidogenic segments of NCAP could be targeted for drug development.


Assuntos
Amiloide , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Humanos , Amiloide/metabolismo , Proteínas Amiloidogênicas , Proteínas do Nucleocapsídeo , Peptídeos/química , Domínios Proteicos , SARS-CoV-2/metabolismo
8.
Nat Commun ; 13(1): 5451, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114178

RESUMO

Alzheimer's disease (AD) is the consequence of neuronal death and brain atrophy associated with the aggregation of protein tau into fibrils. Thus disaggregation of tau fibrils could be a therapeutic approach to AD. The small molecule EGCG, abundant in green tea, has long been known to disaggregate tau and other amyloid fibrils, but EGCG has poor drug-like properties, failing to fully penetrate the brain. Here we have cryogenically trapped an intermediate of brain-extracted tau fibrils on the kinetic pathway to EGCG-induced disaggregation and have determined its cryoEM structure. The structure reveals that EGCG molecules stack in polar clefts between the paired helical protofilaments that pathologically define AD. Treating the EGCG binding position as a pharmacophore, we computationally screened thousands of drug-like compounds for compatibility for the pharmacophore, discovering several that experimentally disaggregate brain-derived tau fibrils in vitro. This work suggests the potential of structure-based, small-molecule drug discovery for amyloid diseases.


Assuntos
Doença de Alzheimer , Amiloidose , Proteínas tau , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Amiloide/química , Amiloide/efeitos dos fármacos , Catequina/análogos & derivados , Catequina/química , Catequina/farmacologia , Microscopia Crioeletrônica , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Chá/química , Proteínas tau/química , Proteínas tau/efeitos dos fármacos , Proteínas tau/metabolismo
9.
J Biol Chem ; 298(10): 102396, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988647

RESUMO

Amyloid protein aggregation is commonly associated with progressive neurodegenerative diseases, however not all amyloid fibrils are pathogenic. The neuronal cytoplasmic polyadenylation element binding protein is a regulator of synaptic mRNA translation and has been shown to form functional amyloid aggregates that stabilize long-term memory. In adult Drosophila neurons, the cytoplasmic polyadenylation element binding homolog Orb2 is expressed as 2 isoforms, of which the Orb2B isoform is far more abundant, but the rarer Orb2A isoform is required to initiate Orb2 aggregation. The N terminus is a distinctive feature of the Orb2A isoform and is critical for its aggregation. Intriguingly, replacement of phenylalanine in the fifth position of Orb2A with tyrosine (F5Y) in Drosophila impairs stabilization of long-term memory. The structure of endogenous Orb2B fibers was recently determined by cryo-EM, but the structure adopted by fibrillar Orb2A is less certain. Here we use micro-electron diffraction to determine the structure of the first 9 N-terminal residues of Orb2A, at a resolution of 1.05 Å. We find that this segment (which we term M9I) forms an amyloid-like array of parallel in-register ß-sheets, which interact through side chain interdigitation of aromatic and hydrophobic residues. Our structure provides an explanation for the decreased aggregation observed for the F5Y mutant and offers a hypothesis for how the addition of a single atom (the tyrosyl oxygen) affects long-term memory. We also propose a structural model of Orb2A that integrates our structure of the M9I segment with the published Orb2B cryo-EM structure.


Assuntos
Peptídeos beta-Amiloides , Amiloide , Proteínas de Drosophila , Drosophila melanogaster , Agregados Proteicos , Fatores de Transcrição , Fatores de Poliadenilação e Clivagem de mRNA , Animais , Amiloide/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elétrons , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Neurônios/metabolismo , Conformação Proteica em Folha beta , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Drosophila melanogaster/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(15): e2119952119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377792

RESUMO

In neurodegenerative diseases including Alzheimer's and amyotrophic lateral sclerosis, proteins that bind RNA are found in aggregated forms in autopsied brains. Evidence suggests that RNA aids nucleation of these pathological aggregates; however, the mechanism has not been investigated at the level of atomic structure. Here, we present the 3.4-Å resolution structure of fibrils of full-length recombinant tau protein in the presence of RNA, determined by electron cryomicroscopy (cryo-EM). The structure reveals the familiar in-register cross-ß amyloid scaffold but with a small fibril core spanning residues Glu391 to Ala426, a region disordered in the fuzzy coat in all previously studied tau polymorphs. RNA is bound on the fibril surface to the positively charged residues Arg406 and His407 and runs parallel to the fibril axis. The fibrils dissolve when RNase is added, showing that RNA is necessary for fibril integrity. While this structure cannot exist simultaneously with the tau fibril structures extracted from patients' brains, it could conceivably account for the nucleating effects of RNA cofactors followed by remodeling as fibrils mature.


Assuntos
Amiloide , RNA , Proteínas tau , Amiloide/química , Microscopia Crioeletrônica , Humanos , RNA/química , Proteínas tau/química
11.
Nat Struct Mol Biol ; 28(9): 724-730, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34518699

RESUMO

Amyloidosis of human islet amyloid polypeptide (hIAPP) is a pathological hallmark of type II diabetes (T2D), an epidemic afflicting nearly 10% of the world's population. To visualize disease-relevant hIAPP fibrils, we extracted amyloid fibrils from islet cells of a T2D donor and amplified their quantity by seeding synthetic hIAPP. Cryo-EM studies revealed four fibril polymorphic atomic structures. Their resemblance to four unseeded hIAPP fibrils varies from nearly identical (TW3) to non-existent (TW2). The diverse repertoire of hIAPP polymorphs appears to arise from three distinct protofilament cores entwined in different combinations. The structural distinctiveness of TW1, TW2 and TW4 suggests they may be faithful replications of the pathogenic seeds. If so, the structures determined here provide the most direct view yet of hIAPP amyloid fibrils formed during T2D.


Assuntos
Amiloide/química , Microscopia Crioeletrônica , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Sequência de Aminoácidos , Amiloide/isolamento & purificação , Vermelho Congo , Diabetes Mellitus Tipo 2/metabolismo , Genótipo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Ilhotas Pancreáticas/química , Modelos Moleculares , Reação em Cadeia da Polimerase , Agregados Proteicos , Conformação Proteica , Proteínas Recombinantes/química , Análise de Sequência de DNA , Coloração e Rotulagem
12.
bioRxiv ; 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33688654

RESUMO

The SARS-CoV-2 Nucleoprotein (NCAP) functions in RNA packaging during viral replication and assembly. Computational analysis of its amino acid sequence reveals a central low-complexity domain (LCD) having sequence features akin to LCDs in other proteins known to function in liquid-liquid phase separation. Here we show that in the presence of viral RNA, NCAP, and also its LCD segment alone, form amyloid-like fibrils when undergoing liquid-liquid phase separation. Within the LCD we identified three 6-residue segments that drive amyloid fibril formation. We determined atomic structures for fibrils formed by each of the three identified segments. These structures informed our design of peptide inhibitors of NCAP fibril formation and liquid-liquid phase separation, suggesting a therapeutic route for Covid-19. ONE SENTENCE SUMMARY: Atomic structures of amyloid-driving peptide segments from SARS-CoV-2 Nucleoprotein inform the development of Covid-19 therapeutics.

13.
Nat Commun ; 11(1): 4090, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796831

RESUMO

hnRNPA2 is a human ribonucleoprotein (RNP) involved in RNA metabolism. It forms fibrils both under cellular stress and in mutated form in neurodegenerative conditions. Previous work established that the C-terminal low-complexity domain (LCD) of hnRNPA2 fibrillizes under stress, and missense mutations in this domain are found in the disease multisystem proteinopathy (MSP). However, little is known at the atomic level about the hnRNPA2 LCD structure that is involved in those processes and how disease mutations cause structural change. Here we present the cryo-electron microscopy (cryoEM) structure of the hnRNPA2 LCD fibril core and demonstrate its capability to form a reversible hydrogel in vitro containing amyloid-like fibrils. Whereas these fibrils, like pathogenic amyloid, are formed from protein chains stacked into ß-sheets by backbone hydrogen bonds, they display distinct structural differences: the chains are kinked, enabling non-covalent cross-linking of fibrils and disfavoring formation of pathogenic steric zippers. Both reversibility and energetic calculations suggest these fibrils are less stable than pathogenic amyloid. Moreover, the crystal structure of the disease-mutation-containing segment (D290V) of hnRNPA2 suggests that the replacement fundamentally alters the fibril structure to a more stable energetic state. These findings illuminate how molecular interactions promote protein fibril networks and how mutation can transform fibril structure from functional to a pathogenic form.


Assuntos
Amiloide/química , Amiloide/metabolismo , Microscopia Crioeletrônica/métodos , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/ultraestrutura , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/química , Humanos , Hidrogéis/química , Proteínas de Ligação a RNA/química
14.
Nat Struct Mol Biol ; 27(7): 653-659, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32541896

RESUMO

Human islet amyloid polypeptide (hIAPP) functions as a glucose-regulating hormone but deposits as amyloid fibrils in more than 90% of patients with type II diabetes (T2D). Here we report the cryo-EM structure of recombinant full-length hIAPP fibrils. The fibril is composed of two symmetrically related protofilaments with ordered residues 14-37. Our hIAPP fibril structure (i) supports the previous hypothesis that residues 20-29 constitute the core of the hIAPP amyloid; (ii) suggests a molecular mechanism for the action of the hIAPP hereditary mutation S20G; (iii) explains why the six residue substitutions in rodent IAPP prevent aggregation; and (iv) suggests regions responsible for the observed hIAPP cross-seeding with ß-amyloid. Furthermore, we performed structure-based inhibitor design to generate potential hIAPP aggregation inhibitors. Four of the designed peptides delay hIAPP aggregation in vitro, providing a starting point for the development of T2D therapeutics and proof of concept that the capping strategy can be used on full-length cryo-EM fibril structures.


Assuntos
Diabetes Mellitus Tipo 2/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Peptídeos/química , Amiloide/química , Animais , Microscopia Crioeletrônica , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Modelos Moleculares , Mutação , Peptídeos/farmacologia , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Roedores
15.
Proc Natl Acad Sci U S A ; 117(7): 3592-3602, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015135

RESUMO

Aggregation of α-synuclein is a defining molecular feature of Parkinson's disease, Lewy body dementia, and multiple systems atrophy. Hereditary mutations in α-synuclein are linked to both Parkinson's disease and Lewy body dementia; in particular, patients bearing the E46K disease mutation manifest a clinical picture of parkinsonism and Lewy body dementia, and E46K creates more pathogenic fibrils in vitro. Understanding the effect of these hereditary mutations on α-synuclein fibril structure is fundamental to α-synuclein biology. We therefore determined the cryo-electron microscopy (cryo-EM) structure of α-synuclein fibrils containing the hereditary E46K mutation. The 2.5-Å structure reveals a symmetric double protofilament in which the molecules adopt a vastly rearranged, lower energy fold compared to wild-type fibrils. We propose that the E46K misfolding pathway avoids electrostatic repulsion between K46 and K80, a residue pair which form the E46-K80 salt bridge in the wild-type fibril structure. We hypothesize that, under our conditions, the wild-type fold does not reach this deeper energy well of the E46K fold because the E46-K80 salt bridge diverts α-synuclein into a kinetic trap-a shallower, more accessible energy minimum. The E46K mutation apparently unlocks a more stable and pathogenic fibril structure.


Assuntos
Doença por Corpos de Lewy/genética , Mutação de Sentido Incorreto , Doença de Parkinson/genética , alfa-Sinucleína/química , alfa-Sinucleína/genética , Motivos de Aminoácidos , Microscopia Crioeletrônica , Humanos , Doença por Corpos de Lewy/congênito , Doença por Corpos de Lewy/metabolismo , Doença de Parkinson/congênito , Doença de Parkinson/metabolismo , Dobramento de Proteína , alfa-Sinucleína/metabolismo
16.
Nat Struct Mol Biol ; 26(11): 1044-1052, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31695184

RESUMO

Deposits of amyloid fibrils of α-synuclein are the histological hallmarks of Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, with hereditary mutations in α-synuclein linked to the first two of these conditions. Seeing the changes to the structures of amyloid fibrils bearing these mutations may help to understand these diseases. To this end, we determined the cryo-EM structures of α-synuclein fibrils containing the H50Q hereditary mutation. We find that the H50Q mutation results in two previously unobserved polymorphs of α-synuclein: narrow and wide fibrils, formed from either one or two protofilaments, respectively. These structures recapitulate conserved features of the wild-type fold but reveal new structural elements, including a previously unobserved hydrogen-bond network and surprising new protofilament arrangements. The structures of the H50Q polymorphs help to rationalize the faster aggregation kinetics, higher seeding capacity in biosensor cells and greater cytotoxicity that we observe for H50Q compared to wild-type α-synuclein.


Assuntos
Amiloide/genética , Mutação Puntual , Agregação Patológica de Proteínas/genética , alfa-Sinucleína/genética , Sequência de Aminoácidos , Amiloide/química , Amiloide/ultraestrutura , Microscopia Crioeletrônica , Células HEK293 , Humanos , Modelos Moleculares , Doença de Parkinson/genética , Conformação Proteica , alfa-Sinucleína/química , alfa-Sinucleína/ultraestrutura
17.
Nat Struct Mol Biol ; 26(10): 988, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31530939

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
J Biol Chem ; 294(44): 16451-16464, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31537646

RESUMO

In Alzheimer's disease (AD) and tauopathies, tau aggregation accompanies progressive neurodegeneration. Aggregated tau appears to spread between adjacent neurons and adjacent brain regions by prion-like seeding. Hence, inhibitors of this seeding offer a possible route to managing tauopathies. Here, we report the 1.0 Å resolution micro-electron diffraction structure of an aggregation-prone segment of tau with the sequence SVQIVY, present in the cores of patient-derived fibrils from AD and tauopathies. This structure illuminates how distinct interfaces of the parent segment, containing the sequence VQIVYK, foster the formation of distinct structures. Peptide-based fibril-capping inhibitors designed to target the two VQIVYK interfaces blocked proteopathic seeding by patient-derived fibrils. These VQIVYK inhibitors add to a panel of tau-capping inhibitors that targets specific polymorphs of recombinant and patient-derived tau fibrils. Inhibition of seeding initiated by brain tissue extracts differed among donors with different tauopathies, suggesting that particular fibril polymorphs of tau are associated with certain tauopathies. Donors with progressive supranuclear palsy exhibited more variation in inhibitor sensitivity, suggesting that fibrils from these donors were more polymorphic and potentially vary within individual donor brains. Our results suggest that a subset of inhibitors from our panel could be specific for particular disease-associated polymorphs, whereas inhibitors that blocked seeding by extracts from all of the tauopathies tested could be used to broadly inhibit seeding by multiple disease-specific tau polymorphs. Moreover, we show that tau-capping inhibitors can be transiently expressed in HEK293 tau biosensor cells, indicating that nucleic acid-based vectors can be used for inhibitor delivery.


Assuntos
Doença de Alzheimer/metabolismo , Tauopatias/metabolismo , Proteínas tau/ultraestrutura , Encéfalo/metabolismo , Células HEK293 , Humanos , Neurônios/metabolismo , Príons/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteínas tau/metabolismo
19.
Nat Commun ; 10(1): 3357, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350392

RESUMO

Amyloid-ß (Aß) harbors numerous posttranslational modifications (PTMs) that may affect Alzheimer's disease (AD) pathogenesis. Here we present the 1.1 Å resolution MicroED structure of an Aß 20-34 fibril with and without the disease-associated PTM, L-isoaspartate, at position 23 (L-isoAsp23). Both wild-type and L-isoAsp23 protofilaments adopt ß-helix-like folds with tightly packed cores, resembling the cores of full-length fibrillar Aß structures, and both self-associate through two distinct interfaces. One of these is a unique Aß interface strengthened by the isoaspartyl modification. Powder diffraction patterns suggest a similar structure may be adopted by protofilaments of an analogous segment containing the heritable Iowa mutation, Asp23Asn. Consistent with its early onset phenotype in patients, Asp23Asn accelerates aggregation of Aß 20-34, as does the L-isoAsp23 modification. These structures suggest that the enhanced amyloidogenicity of the modified Aß segments may also reduce the concentration required to achieve nucleation and therefore help spur the pathogenesis of AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Sequência de Aminoácidos , Peptídeos beta-Amiloides/genética , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Humanos , Ácido Isoaspártico/genética , Ácido Isoaspártico/metabolismo , Isomerismo , Mutação , Conformação Proteica
20.
Nat Struct Mol Biol ; 26(7): 619-627, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235914

RESUMO

The DNA and RNA processing protein TDP-43 undergoes both functional and pathogenic aggregation. Functional TDP-43 aggregates form reversible, transient species such as nuclear bodies, stress granules, and myo-granules. Pathogenic, irreversible TDP-43 aggregates form in amyotrophic lateral sclerosis and other neurodegenerative conditions. Here we find the features of TDP-43 fibrils that confer both reversibility and irreversibility by determining structures of two segments reported to be the pathogenic cores of human TDP-43 aggregation: SegA (residues 311-360), which forms three polymorphs, all with dagger-shaped folds; and SegB A315E (residues 286-331 containing the amyotrophic lateral sclerosis hereditary mutation A315E), which forms R-shaped folds. Energetic analysis suggests that the dagger-shaped polymorphs represent irreversible fibril structures, whereas the SegB polymorph may participate in both reversible and irreversible fibrils. Our structures reveal the polymorphic nature of TDP-43 and suggest how the A315E mutation converts the R-shaped polymorph to an irreversible form that enhances pathology.


Assuntos
Amiloide/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Sequência de Aminoácidos , Amiloide/química , Amiloide/genética , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Modelos Moleculares , Mutação Puntual , Agregados Proteicos , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...