Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38766126

RESUMO

The majority of human breast cancers are dependent on hormone-stimulated estrogen receptor alpha (ER) and are sensitive to its inhibition. Treatment resistance arises in most advanced cancers due to genetic alterations that promote ligand independent activation of ER itself or ER target genes. Whereas re-targeting of the ER ligand binding domain (LBD) with newer ER antagonists can work in some cases, these drugs are largely ineffective in many genetic backgrounds including ER fusions that lose the LBD or in cancers that hyperactivate ER targets. By identifying the mechanism of ER translation, we herein present an alternative strategy to target ER and difficult to treat ER variants. We find that ER translation is cap-independent and mTOR inhibitor insensitive, but dependent on 5' UTR elements and sensitive to pharmacologic inhibition of the translation initiation factor eIF4A, an mRNA helicase. EIF4A inhibition rapidly reduces expression of ER and short-lived targets of ER such as cyclin D1 and other components of the cyclin D-CDK complex in breast cancer cells. These effects translate into suppression of growth of a variety of ligand-independent breast cancer models including those driven by ER fusion proteins that lack the ligand binding site. The efficacy of eIF4A inhibition is enhanced when it is combined with fulvestrant-an ER degrader. Concomitant inhibition of ER synthesis and induction of its degradation causes synergistic and durable inhibition of ER expression and tumor growth. The clinical importance of these findings is confirmed by results of an early clinical trial ( NCT04092673 ) of the selective eIF4A inhibitor zotatifin in patients with estrogen receptor positive metastatic breast cancer. Multiple clinical responses have been observed on combination therapy including durable regressions. These data suggest that eIF4A inhibition could be a useful new strategy for treating advanced ER+ breast cancer.

2.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659913

RESUMO

BRAFV600E mutation occurs in 46% of melanomas and drives high levels of ERK activity and ERK-dependent proliferation. However, BRAFV600E is insufficient to drive melanoma in GEMM models, and 82% of human benign nevi harbor BRAFV600E mutations. We show here that BRAFV600E inhibits mesenchymal migration by causing feedback inhibition of RAC1 activity. ERK pathway inhibition induces RAC1 activation and restores migration and invasion. In cells with BRAFV600E, mutant RAC1, overexpression of PREX1, PREX2, or PTEN inactivation restore RAC1 activity and cell motility. Together, these lesions occur in 48% of BRAFV600E melanomas. Thus, although BRAFV600E activation of ERK deregulates cell proliferation, it prevents full malignant transformation by causing feedback inhibition of cell migration. Secondary mutations are, therefore, required for tumorigenesis. One mechanism underlying tumor evolution may be the selection of lesions that rescue the deleterious effects of oncogenic drivers.

3.
bioRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38529506

RESUMO

Intestinal stem cells (ISCs) drive the rapid regeneration of the gut epithelium to maintain organismal homeostasis. Aging, however, significantly reduces intestinal regenerative capacity. While cellular senescence is a key feature of the aging process, little is known about the in vivo effects of senescent cells on intestinal fitness. Here, we identify the accumulation of senescent cells in the aging gut and, by harnessing senolytic CAR T cells to eliminate them, we uncover their detrimental impact on epithelial integrity and overall intestinal homeostasis in natural aging, injury and colitis. Ablation of intestinal senescent cells with senolytic CAR T cells in vivo or in vitro is sufficient to promote the regenerative potential of aged ISCs. This intervention improves epithelial integrity and mucosal immune function. Overall, these results highlight the ability of senolytic CAR T cells to rejuvenate the intestinal niche and demonstrate the potential of targeted cell therapies to promote tissue regeneration in aging organisms.

5.
Nat Aging ; 4(3): 336-349, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267706

RESUMO

Senescent cells, which accumulate in organisms over time, contribute to age-related tissue decline. Genetic ablation of senescent cells can ameliorate various age-related pathologies, including metabolic dysfunction and decreased physical fitness. While small-molecule drugs that eliminate senescent cells ('senolytics') partially replicate these phenotypes, they require continuous administration. We have developed a senolytic therapy based on chimeric antigen receptor (CAR) T cells targeting the senescence-associated protein urokinase plasminogen activator receptor (uPAR), and we previously showed these can safely eliminate senescent cells in young animals. We now show that uPAR-positive senescent cells accumulate during aging and that they can be safely targeted with senolytic CAR T cells. Treatment with anti-uPAR CAR T cells improves exercise capacity in physiological aging, and it ameliorates metabolic dysfunction (for example, improving glucose tolerance) in aged mice and in mice on a high-fat diet. Importantly, a single administration of these senolytic CAR T cells is sufficient to achieve long-term therapeutic and preventive effects.


Assuntos
Envelhecimento , Senescência Celular , Camundongos , Animais , Adipócitos , Transdução de Sinais , Linfócitos T
6.
Res Sq ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37841853

RESUMO

Senescent cells accumulate in organisms over time because of tissue damage and impaired immune surveillance and contribute to age-related tissue decline1,2. In agreement, genetic ablation studies reveal that elimination of senescent cells from aged tissues can ameliorate various age-related pathologies, including metabolic dysfunction and decreased physical fitness3-7. While small-molecule drugs capable of eliminating senescent cells (known as 'senolytics') partially replicate these phenotypes, many have undefined mechanisms of action and all require continuous administration to be effective. As an alternative approach, we have developed a cell-based senolytic therapy based on chimeric antigen receptor (CAR) T cells targeting uPAR, a cell-surface protein upregulated on senescent cells, and previously showed these can safely and efficiently eliminate senescent cells in young animals and reverse liver fibrosis8. We now show that uPAR-positive senescent cells accumulate during physiological aging and that they can be safely targeted with senolytic CAR T cells. Treatment with anti uPAR CAR T cells ameliorates metabolic dysfunction by improving glucose tolerance and exercise capacity in physiological aging as well as in a model of metabolic syndrome. Importantly, a single administration of a low dose of these senolytic CAR T cells is sufficient to achieve long-term therapeutic and preventive effects.

7.
Cancer Res Commun ; 3(9): 1788-1799, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37691854

RESUMO

The FOXA1 pioneer factor is an essential mediator of steroid receptor function in multiple hormone-dependent cancers, including breast and prostate cancers, enabling nuclear receptors such as estrogen receptor (ER) and androgen receptor (AR) to activate lineage-specific growth programs. FOXA1 is also highly expressed in non-small cell lung cancer (NSCLC), but whether and how it regulates tumor growth in this context is not known. Analyzing data from loss-of-function screens, we identified a subset of NSCLC tumor lines where proliferation is FOXA1 dependent. Using rapid immunoprecipitation and mass spectrometry of endogenous protein, we identified chromatin-localized interactions between FOXA1 and glucocorticoid receptor (GR) in these tumor cells. Knockdown of GR inhibited proliferation of FOXA1-dependent, but not FOXA1-independent NSCLC cells. In these FOXA1-dependent models, FOXA1 and GR cooperate to regulate gene targets involved in EGF signaling and G1-S cell-cycle progression. To investigate the therapeutic potential for targeting this complex, we examined the effects of highly selective inhibitors of the GR ligand-binding pocket and found that GR antagonism with ORIC-101 suppressed FOXA1/GR target expression, activation of EGF signaling, entry into the S-phase, and attendant proliferation in vitro and in vivo. Taken together, our findings point to a subset of NSCLCs harboring a dependence on the FOXA1/GR growth program and provide rationale for its therapeutic targeting. Significance: NSCLC is the leading cause of cancer deaths worldwide. There is a need to identify novel druggable dependencies. We identify a subset of NSCLCs dependent on FOXA1-GR and sensitive to GR antagonism.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Fator 3-alfa Nuclear de Hepatócito , Neoplasias Pulmonares , Receptores de Glucocorticoides , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Fator de Crescimento Epidérmico , Neoplasias Pulmonares/tratamento farmacológico , Receptores de Glucocorticoides/genética , Fator 3-alfa Nuclear de Hepatócito/genética
8.
Nat Mater ; 22(3): 391-399, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864161

RESUMO

Medulloblastoma is the most common malignant paediatric brain tumour, with ~30% mediated by Sonic hedgehog signalling. Vismodegib-mediated inhibition of the Sonic hedgehog effector Smoothened inhibits tumour growth but causes growth plate fusion at effective doses. Here, we report a nanotherapeutic approach targeting endothelial tumour vasculature to enhance blood-brain barrier crossing. We use fucoidan-based nanocarriers targeting endothelial P-selectin to induce caveolin-1-dependent transcytosis and thus nanocarrier transport into the brain tumour microenvironment in a selective and active manner, the efficiency of which is increased by radiation treatment. In a Sonic hedgehog medulloblastoma animal model, fucoidan-based nanoparticles encapsulating vismodegib exhibit a striking efficacy and marked reduced bone toxicity and drug exposure to healthy brain tissue. Overall, these findings demonstrate a potent strategy for targeted intracranial pharmacodelivery that overcomes the restrictive blood-brain barrier to achieve enhanced tumour-selective penetration and has therapeutic implications for diseases within the central nervous system.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Animais , Proteínas Hedgehog , Barreira Hematoencefálica , Caveolina 1 , Selectina-P , Transcitose , Microambiente Tumoral
11.
Nat Chem Biol ; 17(10): 1065-1074, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34168367

RESUMO

The clinical benefits of pan-mTOR active-site inhibitors are limited by toxicity and relief of feedback inhibition of receptor expression. To address these limitations, we designed a series of compounds that selectively inhibit mTORC1 and not mTORC2. These 'bi-steric inhibitors' comprise a rapamycin-like core moiety covalently linked to an mTOR active-site inhibitor. Structural modification of these components modulated their affinities for their binding sites on mTOR and the selectivity of the bi-steric compound. mTORC1-selective compounds potently inhibited 4EBP1 phosphorylation and caused regressions of breast cancer xenografts. Inhibition of 4EBP1 phosphorylation was sufficient to block cancer cell growth and was necessary for maximal antitumor activity. At mTORC1-selective doses, these compounds do not alter glucose tolerance, nor do they relieve AKT-dependent feedback inhibition of HER3. Thus, in preclinical models, selective inhibitors of mTORC1 potently inhibit tumor growth while causing less toxicity and receptor reactivation as compared to pan-mTOR inhibitors.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Relação Estrutura-Atividade
12.
Mol Cell ; 81(4): 708-723.e5, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606974

RESUMO

The PI3K pathway regulates cell metabolism, proliferation, and migration, and its dysregulation is common in cancer. We now show that both physiologic and oncogenic activation of PI3K signaling increase the expression of its negative regulator PTEN. This limits the duration of the signal and output of the pathway. Physiologic and pharmacologic inhibition of the pathway reduces PTEN and contributes to the rebound in pathway activity in tumors treated with PI3K inhibitors and limits their efficacy. Regulation of PTEN is due to mTOR/4E-BP1-dependent control of its translation and is lost when 4E-BP1 is deleted. Translational regulation of PTEN is therefore a major homeostatic regulator of physiologic PI3K signaling and plays a role in reducing the pathway activation by oncogenic PIK3CA mutants and the antitumor activity of PI3K pathway inhibitors. However, pathway output is hyperactivated in tumor cells with coexistent PI3K mutation and loss of PTEN function.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Homeostase , Neoplasias/enzimologia , PTEN Fosfo-Hidrolase/biossíntese , Biossíntese de Proteínas , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células CHO , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Cricetulus , Humanos , Mutação , Neoplasias/genética , PTEN Fosfo-Hidrolase/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
13.
Nature ; 583(7814): 127-132, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32555459

RESUMO

Cellular senescence is characterized by stable cell-cycle arrest and a secretory program that modulates the tissue microenvironment1,2. Physiologically, senescence serves as a tumour-suppressive mechanism that prevents the expansion of premalignant cells3,4 and has a beneficial role in wound-healing responses5,6. Pathologically, the aberrant accumulation of senescent cells generates an inflammatory milieu that leads to chronic tissue damage and contributes to diseases such as liver and lung fibrosis, atherosclerosis, diabetes and osteoarthritis1,7. Accordingly, eliminating senescent cells from damaged tissues in mice ameliorates the symptoms of these pathologies and even promotes longevity1,2,8-10. Here we test the therapeutic concept that chimeric antigen receptor (CAR) T cells that target senescent cells can be effective senolytic agents. We identify the urokinase-type plasminogen activator receptor (uPAR)11 as a cell-surface protein that is broadly induced during senescence and show that uPAR-specific CAR T cells efficiently ablate senescent cells in vitro and in vivo. CAR T cells that target uPAR extend the survival of mice with lung adenocarcinoma that are treated with a senescence-inducing combination of drugs, and restore tissue homeostasis in mice in which liver fibrosis is induced chemically or by diet. These results establish the therapeutic potential of senolytic CAR T cells for senescence-associated diseases.


Assuntos
Envelhecimento/patologia , Senescência Celular/imunologia , Cirrose Hepática/terapia , Longevidade/imunologia , Neoplasias Pulmonares/terapia , Receptores de Antígenos Quiméricos/imunologia , Rejuvenescimento , Linfócitos T/imunologia , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Animais , Tetracloreto de Carbono , Feminino , Xenoenxertos , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
14.
Toxicology ; 394: 27-34, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29197551

RESUMO

The mouse strain SKH1 is widely used in skin research due to its hairless phenotype and intact immune system. Due to the complex nature of aryl hydrocarbon receptor (AHR) function in the skin, the development of additional in vivo models is necessary to study its role in cutaneous homeostasis and pathology. Variants of the Ah allele, exist among different mouse strains. The Ahb-1 and Ahd alleles express high and low affinity ligand binding forms of the AHR, respectively. The outbred SKH1 mice express the Ahb-2 and/or Ahd alleles. SKH1 mice were crossed with C57BL/6J mice, which harbor the Ahb-1 allele, to create useful models for studying endogenous AHR function. SKH1 mice were bred to be homozygous for either the Ahb-1 or Ahd allele to establish strains for use in comparative studies of the effects of differential ligand-mediated activation through gene expression changes upon UVB exposure. Ahb-1 or Ahd allelic status was confirmed by DNA sequence analysis. We tested the hypothesis that SKH1-Ahb-1 mice would display enhanced inflammatory signaling upon UVB exposure compared to SKH1-Ahd mice. Differential basal AHR activation between the strains was determined by assessing Cyp1a1 expression levels in the small intestine, liver, and skin of the SKH1-Ahb-1 mice compared to SKH1-Ahd mice. To determine whether SKH1-Ahb-1 mice are more prone to a pro-inflammatory phenotype in response to UVB, gene expression of inflammatory mediators was analyzed. SKH1-Ahb-1 mice expressed enhanced gene expression of the chemotactic factors Cxcl5, Cxcl1, and Ccl20, as well as the inflammatory signaling factors S100a9 and Ptgs2, compared to SKH1-Ahd mice in skin. These data supports a role for AHR activation and enhanced inflammatory signaling in skin.


Assuntos
Dermatite/genética , Receptores de Hidrocarboneto Arílico/genética , Alelos , Sequência de Aminoácidos , Animais , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1A1/genética , Dermatite/enzimologia , Dermatite/etiologia , Expressão Gênica , Variação Genética , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Hidrocarboneto Arílico/agonistas , Pele/efeitos dos fármacos , Pele/enzimologia , Pele/efeitos da radiação , Raios Ultravioleta
15.
Toxicol Sci ; 160(1): 83-94, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973351

RESUMO

Chemokines are components of the skin microenvironment, which enable immune cell chemotaxis. Traditionally, transcription factors involved in inflammatory signaling (eg, NFκB) are important mediators of chemokine expression. To what extent xenobiotics and their associated receptors control chemokine expression is poorly understood. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor known to mediate physiological responses in the skin through the regulation of genes involved in xenobiotic metabolism, epidermal differentiation, and immunity. Here, we demonstrate that AHR activation within primary mouse keratinocytes regulates the expression of a neutrophil directing chemokine (C-X-C motif) ligand 5 (Cxcl5). AHR-mediated regulation of Cxcl5 is because of direct transcriptional activity upon treatment with AHR agonists such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Additionally, AHR mediates enhanced induction of Cxcl5 upon exposure to an agonist and the inflammatory cytokine interleukin 1 beta. This synergy is confined primarily to keratinocytes, as dermal fibroblasts did not achieve the same level of combinatorial induction. AHR-specific antagonists were able to reduce basal and induced levels of Cxcl5, demonstrating the potential for pharmacological intervention. Exposure of C57BL/6 J mice to ultraviolet (UV) light followed by topical treatment with the AHR agonist formylindolo(3,2-b)carbazole (FICZ) significantly induced Cxcl5 expression in skin compared with UV alone, and this response was absent in Ahr-/- mice. These results establish AHR as an important mediator of Cxcl5, with implications for the treatment of inflammatory skin diseases.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Carbazóis/toxicidade , Quimiocina CXCL5/metabolismo , Poluentes Ambientais/toxicidade , Queratinócitos/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/agonistas , Pele/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Células Cultivadas , Microambiente Celular , Quimiocina CXCL5/genética , Interleucina-1beta/toxicidade , Queratinócitos/imunologia , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Receptores de Hidrocarboneto Arílico/deficiência , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/imunologia , Pele/metabolismo , Pele/efeitos da radiação , Transcrição Gênica , Raios Ultravioleta/efeitos adversos , Regulação para Cima
16.
Toxicol Sci ; 148(1): 229-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26259605

RESUMO

The Ah receptor (AHR) is directly involved in the regulation of both innate and adaptive immunity. However, these activities are poorly understood at the level of gene regulation. The chemokine (c-c motif) ligand 20 (CCL20) plays a nonredundant role in the chemoattraction of C-C motif receptor 6 expressing cells (eg, T cells and others). A survey of promoter regions of chemokine genes revealed that there are several putative dioxin responsive elements in the mouse Ccl20 promoter. The addition of an AHR agonist along with lipopolysaccharide (LPS) to cultured primary peritoneal macrophages results in synergistic induction of both Ccl20 mRNA and protein, compared with each compound alone. Through the use of macrophage cultures derived from Ahr(-) (/) (-) and Ahr(nls/nls) mice, it was established that expression of the AHR and its ability to translocate into the nucleus are necessary for AHR ligand-mediated synergistic induction of Ccl20. Gel shift analysis determined that a potent tandem AHR binding site ~3.1 kb upstream from the transcriptional start site can efficiently bind the AHR/ARNT (aryl hydrocarbon receptor/AHR nuclear translocator) heterodimer upon activation with a number of AHR agonists. Furthermore, studies reveal that LPS increases AHR levels on the Ccl20 promoter while decreasing HDAC1 occupancy. The level of Ccl20 constitutive expression in the colon is greatly attenuated in Ahr(-) (/) (-) mice. These studies suggest that the presence of AHR ligands during localized inflammation may augment chemokine expression, thus participating in the overall response to pathogens.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Quimiocina CCL20/agonistas , Queratinócitos/efeitos dos fármacos , Lipopolissacarídeos/agonistas , Macrófagos Peritoneais/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Alelos , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carbazóis/toxicidade , Células Cultivadas , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Cruzamentos Genéticos , Sinergismo Farmacológico , Poluentes Ambientais/toxicidade , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Ligantes , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/genética , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...