Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 12(4)2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32295074

RESUMO

Melanoma and Merkel cell carcinoma are two aggressive skin malignancies with high disease-related mortality and increasing incidence rates. Currently, invasive tumor tissue biopsy is the gold standard for their diagnosis, and no reliable easily accessible biomarker is available to monitor patients with melanoma or Merkel cell carcinoma during the disease course. In these last years, liquid biopsy has emerged as a candidate approach to overcome this limit and to identify biomarkers for early cancer diagnosis, prognosis, therapeutic response prediction, and patient follow-up. Liquid biopsy is a blood-based non-invasive procedure that allows the sequential analysis of circulating tumor cells, circulating cell-free and tumor DNA, and extracellular vesicles. These innovative biosources show similar features as the primary tumor from where they originated and represent an alternative to invasive solid tumor biopsy. In this review, the biology and technical challenges linked to the detection and analysis of the different circulating candidate biomarkers for melanoma and Merkel cell carcinoma are discussed as well as their clinical relevance.

2.
Sci Rep ; 10(1): 1612, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005907

RESUMO

The incidence of Merkel cell carcinoma (MCC), a rare and highly metastatic skin malignancy, has sharply increased in the last decade. Clinical biomarkers are urgently needed for MCC prognosis, treatment response monitoring, and early diagnosis of relapse. The clinical interest of circulating tumors cells (CTCs) has been validated in many solid cancers. The aim of this study was to compare CTC detection and characterization in blood samples of patients with MCC using the CellSearch System and the RosetteSep -DEPArray workflow, an innovative procedure to enrich, detect and isolate single CTCs. In preliminary experiments (using spiked MCC cell lines) both methods allowed detecting very few MCC cells. In blood samples from 19 patients with MCC at different stages, CellSearch detected MCC CTCs in 26% of patients, and the R-D workflow in 42% of patients. The detection of CTC-positive patients increased to 52% by the cumulative positivity rate of both methodologies. Moreover, Merkel cell polyomavirus DNA, involved in MCC oncogenesis, was detected in tumor biopsies, but not in all single CTCs from the same patient, reflecting the tumor heterogeneity. Our data demonstrate the possibility to detect, isolate and characterize CTCs in patients with MCC using two complementary approaches.


Assuntos
Carcinoma de Célula de Merkel/patologia , Carcinoma de Célula de Merkel/virologia , Poliomavírus das Células de Merkel/patogenicidade , Células Neoplásicas Circulantes/patologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/virologia , Idoso , Biomarcadores/sangue , Carcinoma de Célula de Merkel/sangue , Contagem de Células , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/virologia , Prognóstico , Pele/patologia , Pele/virologia
3.
Sci Rep ; 9(1): 12212, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434974

RESUMO

GATA2, a zinc finger transcription factor predominantly expressed in hematopoietic cells, acts as an essential regulator of hematopoietic stem cell generation, survival and functionality. Loss and gain of GATA2 expression has been implicated in myelodysplastic syndrome and acute myeloid leukemia (AML) yet the precise biological impact of GATA2 expression on human AML cell fate decisions remains ambiguous. Herein, we performed large-scale bioinformatics that demonstrated relatively frequent GATA2 overexpression in AML patients as well as select human AML (or AML-like) cell lines. By using shRNAi to target GATA2 in these AML cell lines, and an AML cell line expressing normal levels of GATA2, we found that inhibition of GATA2 caused attenuated cell proliferation and enhanced apoptosis exclusively in AML cell lines that overexpress GATA2. We proceeded to pharmacologically inhibit GATA2 in concert with AML chemotherapeutics and found this augmented cell killing in AML cell lines that overexpress GATA2, but not in an AML cell line expressing normal levels of GATA2. These data indicate that inhibition of GATA2 enhances chemotherapy-mediated apoptosis in human AML cells overexpressing GATA2. Thus, we define novel insights into the oncogenic role of GATA2 in human AML cells and suggest the potential utilization of transient GATA2 therapeutic targeting in AML.


Assuntos
Apoptose , Proliferação de Células , Fator de Transcrição GATA2/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Antineoplásicos/uso terapêutico , Fator de Transcrição GATA2/genética , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...