Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Reprod ; 32(2): 153-166, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30430247

RESUMO

KEY MESSAGE: Complex protein-containing reproductive secretions are a conserved trait amongst all extant gymnosperms; the pollination drops of most groups include carbohydrate-modifying enzymes and defence proteins. Pollination drops are aqueous secretions that receive pollen and transport it to the ovule interior in gymnosperms (Coniferales, Cycadales, Ginkgoales, Gnetales). Proteins are well established as components of pollination drops in conifers (Coniferales) and Ephedra spp. (Gnetales), but it is unknown whether proteins are also present in the pollination drops of cycads (Cycadales), Ginkgo (Ginkgoales), Gnetum (Gnetales), or in the pollination drops produced by sterile ovules occurring on pollen plants in the Gnetales. We used liquid chromatography-tandem mass spectrometry followed by database-derived protein identification to conduct proteomic surveys of pollination drops collected from: Ceratozamia hildae, Zamia furfuracea and Cycas rumphii (Cycadales); Ginkgo biloba (Ginkgoales); Gnetum gnemon and Welwitschia mirabilis, including pollination drops from both microsporangiate and ovulate plants (Gnetales). We identified proteins in all samples: C. hildae (61), Z. furfuracea (40), C. rumphii (9), G. biloba (57), G. gnemon ovulate (17) and sterile ovules from microsporangiate plants (25) and W. mirabilis fertile ovules (1) and sterile ovules from microsporangiate plants (138). Proteins involved in defence and carbohydrate modification occurred in the drops of most groups, indicating conserved functions for proteins in pollination drops. Our study demonstrates that all extant gymnosperm groups produce complex reproductive secretions containing proteins, an ancient trait that likely contributed to the evolutionary success of seed plants.


Assuntos
Cycadopsida/fisiologia , Proteínas de Plantas/metabolismo , Polinização/fisiologia , Proteômica , Evolução Biológica , Óvulo Vegetal/fisiologia , Fenótipo , Pólen/fisiologia , Reprodução
2.
Plant Dis ; 102(7): 1254-1263, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30673558

RESUMO

Apple rubbery wood is a disease of apple found around the world, often associated with Apple flat limb disease, and regulated in many countries. Despite its long history in apple cultivation, the disease's causal agent has remained elusive. In this study, next-generation sequencing (NGS) was used to identify and characterize several related novel viral agents from apple rubbery wood-infected plants, which have been named Apple rubbery wood virus (ARWV) 1 and 2. Additional specimens with apple rubbery wood disease tested positive by polymerase chain reaction with primers designed to ARWV 1 and 2 genomic RNA segments. In an NGS-based screening of over 100 Malus and 100 Prunus specimens from a collection of virus-infected trees, only one Malus specimen was found to be infected with ARWV not known to be infected with the disease, which strongly suggests that ARWV is not commonly found in Malus spp. or other fruit trees. The two viruses are most closely related to members of the order Bunyavirales. Three RNA segments (large, medium, and small) were characterized and the viruses likely represent a new genus under the family Phenuiviridae, with a suggested name of Rubodvirus (Rubbery wood virus).


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Malus/virologia , Doenças das Plantas/virologia , Vírus de RNA/fisiologia , Árvores/virologia , Madeira/virologia , Sequência de Bases , Primers do DNA/genética , Frutas/virologia , Genoma Viral/genética , Filogenia , Reação em Cadeia da Polimerase , Prunus/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Homologia de Sequência do Ácido Nucleico
3.
Arch Virol ; 162(9): 2821-2828, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28547382

RESUMO

Cherry virus A (CVA) is a ubiquitous graft-transmissible virus that mainly infects Prunus spp. Next-generation sequencing was applied to 39 tree fruit specimens infected with CVA, and 75 full and 16 partial-length CVA genome sequences were assembled. Phylogenetic analysis of these and 11 previously sequenced CVA genomes resulted in six major clusters with no observable relationship between the host and the assembled genome sequences. Recombination analysis detected four recombinants. Consistent single-nucleotide polymorphism (SNP) patterns were observed between the 75 full-length genomes and their sequence clouds, which supports a quasispecies model for CVA evolution.


Assuntos
Flexiviridae/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia
4.
Plant Reprod ; 29(4): 273-286, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27699505

RESUMO

KEY MESSAGE: Douglas-fir transcriptomics. Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is economically important with extensive breeding programs and seed trade. However, the molecular genetics of its seed development are largely unknown. We developed a transcriptome resource covering key developmental stages of megagametophytes over time: prefertilization, fertilization, embryogenesis, and early, unfertilized abortion. RNA sequencing reads were assembled de novo into 105,505 predicted high-confidence transcripts derived from 34,521 predicted genes. Expression levels were estimated based on alignment of the original reads to the reference. Megagametophytes express a distinct set of genes compared to those of vegetative tissues. Transcripts related to signaling, protein turnover, and RNA biogenesis have lower expression values in vegetative tissues, whereas cell wall remodeling, solute transport, and seed storage protein transcripts have higher expression values in megagametophytes. Seed storage protein transcripts become very abundant in both pollinated and unpollinated megagametophytes over time, even in aborting ovules. However, the absence of protein storage bodies in unfertilized megagametophytes suggests extensive posttranscriptional mechanisms that either inhibit storage protein translation or their aggregation into protein bodies. This novel transcriptome resource provides a foundation for further important insights into conifer seed development.


Assuntos
Pseudotsuga/genética , Sementes/genética , Transcriptoma , Fertilização , Anotação de Sequência Molecular , Óvulo Vegetal/embriologia , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Proteínas de Plantas/genética , Pseudotsuga/embriologia , Pseudotsuga/crescimento & desenvolvimento , Sementes/embriologia , Sementes/crescimento & desenvolvimento , Análise de Sequência de RNA
5.
J Virol Methods ; 236: 35-40, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27387642

RESUMO

The majority of plant viruses contain RNA genomes. Detection of viral RNA genomes in infected plant material by next generation sequencing (NGS) is possible through the extraction and sequencing of total RNA, total RNA devoid of ribosomal RNA, small RNA interference (RNAi) molecules, or double stranded RNA (dsRNA). Plants do not typically produce high molecular weight dsRNA, therefore the presence of dsRNA makes it an attractive target for plant virus diagnostics. The sensitivity of NGS as a diagnostic method demands an effective dsRNA protocol that is both representative of the sample and minimizes sample cross contamination. We have developed a modified dsRNA extraction protocol that is more efficient compared to traditional protocols, requiring reduced amounts of starting material, that is less prone to sample cross contamination. This was accomplished by using bead based homogenization of plant material in closed, disposable 50ml tubes. To assess the quality of extraction, we also developed an internal control by designing a real-time (quantitative) PCR (qPCR) assay that targets endornaviruses present in Phaseolus vulgaris cultivar Black Turtle Soup (BTS).


Assuntos
Programas de Rastreamento/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Vírus de Plantas/isolamento & purificação , Plantas/virologia , RNA de Cadeia Dupla/isolamento & purificação , RNA Viral/isolamento & purificação , Análise de Sequência de DNA/métodos , Programas de Rastreamento/normas , Vírus de Plantas/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , Padrões de Referência
6.
Genome Biol ; 17(1): 124, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27286965

RESUMO

BACKGROUND: The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. RESULTS: We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative 'effector islands' in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. CONCLUSIONS: These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.


Assuntos
Genoma de Protozoário , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Tylenchoidea/genética , Tylenchoidea/patogenicidade , Animais , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Transferência Genética Horizontal , Ilhas Genômicas , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Estágios do Ciclo de Vida , Motivos de Nucleotídeos , Matrizes de Pontuação de Posição Específica , Sítios de Splice de RNA , Splicing de RNA , Transcriptoma , Tylenchoidea/crescimento & desenvolvimento , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...