Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Cardiovasc Res ; 120(8): 927-942, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38661182

RESUMO

AIMS: In patients with heart failure (HF), concomitant sinus node dysfunction (SND) is an important predictor of mortality, yet its molecular underpinnings are poorly understood. Using proteomics, this study aimed to dissect the protein and phosphorylation remodelling within the sinus node in an animal model of HF with concurrent SND. METHODS AND RESULTS: We acquired deep sinus node proteomes and phosphoproteomes in mice with heart failure and SND and report extensive remodelling. Intersecting the measured (phospho)proteome changes with human genomics pharmacovigilance data, highlighted downregulated proteins involved in electrical activity such as the pacemaker ion channel, Hcn4. We confirmed the importance of ion channel downregulation for sinus node physiology using computer modelling. Guided by the proteomics data, we hypothesized that an inflammatory response may drive the electrophysiological remodeling underlying SND in heart failure. In support of this, experimentally induced inflammation downregulated Hcn4 and slowed pacemaking in the isolated sinus node. From the proteomics data we identified proinflammatory cytokine-like protein galectin-3 as a potential target to mitigate the effect. Indeed, in vivo suppression of galectin-3 in the animal model of heart failure prevented SND. CONCLUSION: Collectively, we outline the protein and phosphorylation remodeling of SND in heart failure, we highlight a role for inflammation in electrophysiological remodelling of the sinus node, and we present galectin-3 signalling as a target to ameliorate SND in heart failure.


Assuntos
Modelos Animais de Doenças , Insuficiência Cardíaca , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Camundongos Endogâmicos C57BL , Proteômica , Síndrome do Nó Sinusal , Nó Sinoatrial , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Nó Sinoatrial/metabolismo , Nó Sinoatrial/fisiopatologia , Fosforilação , Síndrome do Nó Sinusal/metabolismo , Síndrome do Nó Sinusal/fisiopatologia , Síndrome do Nó Sinusal/genética , Masculino , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Inflamação/fisiopatologia , Inflamação/patologia , Frequência Cardíaca , Canais de Potássio/metabolismo , Canais de Potássio/genética , Simulação por Computador , Modelos Cardiovasculares , Humanos , Transdução de Sinais , Potenciais de Ação
2.
Circ Res ; 134(10): 1306-1326, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38533639

RESUMO

BACKGROUND: Ventricular arrhythmias (VAs) demonstrate a prominent day-night rhythm, commonly presenting in the morning. Transcriptional rhythms in cardiac ion channels accompany this phenomenon, but their role in the morning vulnerability to VAs and the underlying mechanisms are not understood. We investigated the recruitment of transcription factors that underpins transcriptional rhythms in ion channels and assessed whether this mechanism was pertinent to the heart's intrinsic diurnal susceptibility to VA. METHODS AND RESULTS: Assay for transposase-accessible chromatin with sequencing performed in mouse ventricular myocyte nuclei at the beginning of the animals' inactive (ZT0) and active (ZT12) periods revealed differentially accessible chromatin sites annotating to rhythmically transcribed ion channels and distinct transcription factor binding motifs in these regions. Notably, motif enrichment for the glucocorticoid receptor (GR; transcriptional effector of corticosteroid signaling) in open chromatin profiles at ZT12 was observed, in line with the well-recognized ZT12 peak in circulating corticosteroids. Molecular, electrophysiological, and in silico biophysically-detailed modeling approaches demonstrated GR-mediated transcriptional control of ion channels (including Scn5a underlying the cardiac Na+ current, Kcnh2 underlying the rapid delayed rectifier K+ current, and Gja1 responsible for electrical coupling) and their contribution to the day-night rhythm in the vulnerability to VA. Strikingly, both pharmacological block of GR and cardiomyocyte-specific genetic knockout of GR blunted or abolished ion channel expression rhythms and abolished the ZT12 susceptibility to pacing-induced VA in isolated hearts. CONCLUSIONS: Our study registers a day-night rhythm in chromatin accessibility that accompanies diurnal cycles in ventricular myocytes. Our approaches directly implicate the cardiac GR in the myocyte excitability rhythm and mechanistically link the ZT12 surge in glucocorticoids to intrinsic VA propensity at this time.


Assuntos
Ritmo Circadiano , Miócitos Cardíacos , Receptores de Glucocorticoides , Animais , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Camundongos , Miócitos Cardíacos/metabolismo , Masculino , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/genética , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Conexina 43/metabolismo , Conexina 43/genética , Camundongos Knockout , Potenciais de Ação
3.
Heart Rhythm ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38428449

RESUMO

Bradyarrhythmias including sinus bradycardia and atrioventricular (AV) block are frequently encountered in endurance athletes especially at night. While these are well tolerated by the young athlete, there is evidence that generally from the fifth decade of life onward, such arrhythmias can degenerate into pathological symptomatic bradycardia requiring pacemaker therapy. For many years, athletic bradycardia and AV block have been attributed to high vagal tone, but work from our group has questioned this widely held assumption and demonstrated a role for intrinsic electrophysiological remodeling of the sinus node and the AV node. In this article, we argue that bradyarrhythmias in the veteran athlete arise from the cumulative effects of exercise training, the circadian rhythm and aging on the electrical activity of the nodes. We consider contemporary strategies for the treatment of symptomatic bradyarrhythmias in athletes and highlight potential therapies resulting from our evolving mechanistic understanding of this phenomenon.

4.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220179, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37122216

RESUMO

Although, for many decades, the day-night rhythm in resting heart rate has been attributed to the parasympathetic branch of the autonomic nervous system (high vagal tone during sleep), recently we have shown that there is a circadian clock in the cardiac pacemaker, the sinus node, and the day-night rhythm in heart rate involves an intrinsic rhythmic transcriptional remodelling of pacemaker ion channels, particularly Hcn4. We have now investigated the role of the sympathetic branch of the autonomic nervous system in this and shown it to have a non-canonical role. In mice, sustained long-term block of cardiac ß-adrenergic receptors by propranolol administered in the drinking water abolished the day-night rhythm in pacemaking in the isolated sinus node. Concomitant with this, there was a loss of the normal day-night rhythm in many pacemaker ion channel transcripts. However, there was little or no change in the local circadian clock, indicating that the well-known day-night rhythm in sympathetic nerve activity is directly involved in pacemaker ion channel transcription. The day-night rhythm in pacemaking helps explain the occurrence of clinically significant bradyarrhythmias during sleep, and this study improves our understanding of this pathology. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Assuntos
Nó Sinoatrial , Sistema Nervoso Simpático , Animais , Camundongos , Frequência Cardíaca/fisiologia , Sistema Nervoso Simpático/fisiologia , Nó Sinoatrial/fisiologia , Canais Iônicos , Sono , Ritmo Circadiano/fisiologia
5.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220178, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37122221

RESUMO

Patients with pulmonary arterial hypertension (PAH) have a high burden of arrhythmias, including arrhythmias arising from sinus node dysfunction, and the aim of this study was to investigate the effects of PAH on the sinus node. In the rat, PAH was induced by an injection of monocrotaline. Three weeks after injection, there was a decrease of the intrinsic heart rate (heart rate in the absence of autonomic tone) as well as the normal heart rate, evidence of sinus node dysfunction. In the sinus node of PAH rats, there was a significant downregulation of many ion channels and Ca2+-handling genes that could explain the dysfunction: HCN1 and HCN4 (responsible for pacemaker current, If), Cav1.2, Cav1.3 and Cav3.1 (responsible for L- and T-type Ca2+ currents, ICa,L and ICa,T), NCX1 (responsible for Na+-Ca2+ exchanger) and SERCA2 and RYR2 (Ca2+-handling molecules). In the sinus node of PAH rats, there was also a significant upregulation of many fibrosis genes that could also help explain the dysfunction: vimentin, collagen type 1, elastin, fibronectin and transforming growth factor ß1. In summary, in PAH, there is a remodelling of ion channel, Ca2+-handling and fibrosis genes in the sinus node that is likely to be responsible for the sinus node dysfunction. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Assuntos
Hipertensão Arterial Pulmonar , Nó Sinoatrial , Ratos , Animais , Nó Sinoatrial/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Síndrome do Nó Sinusal/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Fibrose
6.
Front Pharmacol ; 14: 1083910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081960

RESUMO

Heart failure is associated with atrioventricular (AV) node dysfunction, and AV node dysfunction in the setting of heart failure is associated with an increased risk of mortality and heart failure hospitalisation. This study aims to understand the causes of AV node dysfunction in heart failure by studying changes in the whole nodal transcriptome. The mouse transverse aortic constriction model of pressure overload-induced heart failure was studied; functional changes were assessed using electrocardiography and echocardiography and the transcriptome of the AV node was quantified using RNAseq. Heart failure was associated with a significant increase in the PR interval, indicating a slowing of AV node conduction and AV node dysfunction, and significant changes in 3,077 transcripts (5.6% of the transcriptome). Many systems were affected: transcripts supporting AV node conduction were downregulated and there were changes in transcripts identified by GWAS as determinants of the PR interval. In addition, there was evidence of remodelling of the sarcomere, a shift from fatty acid to glucose metabolism, remodelling of the extracellular matrix, and remodelling of the transcription and translation machinery. There was evidence of the causes of this widespread remodelling of the AV node: evidence of dysregulation of multiple intracellular signalling pathways, dysregulation of 109 protein kinases and 148 transcription factors, and an immune response with a proliferation of neutrophils, monocytes, macrophages and B lymphocytes and a dysregulation of 40 cytokines. In conclusion, inflammation and a widespread transcriptional remodelling of the AV node underlies AV node dysfunction in heart failure.

7.
Front Physiol ; 12: 582037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489716

RESUMO

The cardiac hyperpolarization-activated "funny" current (I f), which contributes to sinoatrial node (SAN) pacemaking, has a more negative half-maximal activation voltage and smaller fully-activated macroscopic conductance in human than in rabbit SAN cells. The consequences of these differences for the relative roles of I f in the two species, and for their responses to the specific bradycardic agent ivabradine at clinical doses have not been systematically explored. This study aims to address these issues, through incorporating rabbit and human I f formulations developed by Fabbri et al. into the Severi et al. model of rabbit SAN cells. A theory was developed to correlate the effect of I f reduction with the total inward depolarising current (I total) during diastolic depolarization. Replacing the rabbit I f formulation with the human one increased the pacemaking cycle length (CL) from 355 to 1,139 ms. With up to 20% I f reduction (a level close to the inhibition of I f by ivabradine at clinical concentrations), a modest increase (~5%) in the pacemaking CL was observed with the rabbit I f formulation; however, the effect was doubled (~12.4%) for the human I f formulation, even though the latter has smaller I f density. When the action of acetylcholine (ACh, 0.1 nM) was considered, a 20% I f reduction markedly increased the pacemaking CL by 37.5% (~27.3% reduction in the pacing rate), which is similar to the ivabradine effect at clinical concentrations. Theoretical analysis showed that the resultant increase of the pacemaking CL is inversely proportional to the magnitude of I total during diastolic depolarization phase: a smaller I f in the model resulted in a smaller I total amplitude, resulting in a slower pacemaking rate; and the same reduction in I f resulted in a more significant change of CL in the cell model with a smaller I total. This explained the mechanism by which a low dose of ivabradine slows pacemaking rate more in humans than in the rabbit. Similar results were seen in the Fabbri et al. model of human SAN cells, suggesting our observations are model-independent. Collectively, the results of study explain why low dose ivabradine at clinically relevant concentrations acts as an effective bradycardic agent in modulating human SAN pacemaking.

8.
Prog Biophys Mol Biol ; 166: 61-85, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34197836

RESUMO

The funny current, If, was first recorded in the heart 40 or more years ago by Dario DiFrancesco and others. Since then, we have learnt that If plays an important role in pacemaking in the sinus node, the innate pacemaker of the heart, and more recently evidence has accumulated to show that If may play an important role in action potential conduction through the atrioventricular (AV) node. Evidence has also accumulated to show that regulation of the transcription and translation of the underlying Hcn genes plays an important role in the regulation of sinus node pacemaking and AV node conduction under normal physiological conditions - in athletes, during the circadian rhythm, in pregnancy, and during postnatal development - as well as pathological states - ageing, heart failure, pulmonary hypertension, diabetes and atrial fibrillation. There may be yet more pathological conditions involving changes in the expression of the Hcn genes. Here, we review the role of If and the underlying HCN channels in physiological and pathological changes of the sinus and AV nodes and we begin to explore the signalling pathways (microRNAs, transcription factors, GIRK4, the autonomic nervous system and inflammation) involved in this regulation. This review is dedicated to Dario DiFrancesco on his retirement.


Assuntos
Fibrilação Atrial , Nó Atrioventricular , Potenciais de Ação , Frequência Cardíaca , Humanos , Nó Sinoatrial
9.
Circ Heart Fail ; 14(7): e007505, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34190577

RESUMO

BACKGROUND: Purkinje fibers (PFs) control timing of ventricular conduction and play a key role in arrhythmogenesis in heart failure (HF) patients. We investigated the effects of HF on PFs. METHODS: Echocardiography, electrocardiography, micro-computed tomography, quantitative polymerase chain reaction, immunohistochemistry, volume electron microscopy, and sharp microelectrode electrophysiology were used. RESULTS: Congestive HF was induced in rabbits by left ventricular volume- and pressure-overload producing left ventricular hypertrophy, diminished fractional shortening and ejection fraction, and increased left ventricular dimensions. HF baseline QRS and corrected QT interval were prolonged by 17% and 21% (mean±SEMs: 303±6 ms HF, 249±11 ms control; n=8/7; P=0.0002), suggesting PF dysfunction and impaired ventricular repolarization. Micro-computed tomography imaging showed increased free-running left PF network volume and length in HF. mRNA levels for 40 ion channels, Ca2+-handling proteins, connexins, and proinflammatory and fibrosis markers were assessed: 50% and 35% were dysregulated in left and right PFs respectively, whereas only 12.5% and 7.5% changed in left and right ventricular muscle. Funny channels, Ca2+-channels, and K+-channels were significantly reduced in left PFs. Microelectrode recordings from left PFs revealed more negative resting membrane potential, reduced action potential upstroke velocity, prolonged duration (action potential duration at 90% repolarization: 378±24 ms HF, 249±5 ms control; n=23/38; P<0.0001), and arrhythmic events in HF. Similar electrical remodeling was seen at the left PF-ventricular junction. In the failing left ventricle, upstroke velocity and amplitude were increased, but action potential duration at 90% repolarization was unaffected. CONCLUSIONS: Severe volume- followed by pressure-overload causes rapidly progressing HF with extensive remodeling of PFs. The PF network is central to both arrhythmogenesis and contractile dysfunction and the pathological remodeling may increase the risk of fatal arrhythmias in HF patients.


Assuntos
Potenciais de Ação/fisiologia , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/fisiopatologia , Remodelação Ventricular/fisiologia , Animais , Estimulação Cardíaca Artificial/efeitos adversos , Eletrocardiografia/métodos , Frequência Cardíaca/fisiologia , Masculino , Modelos Animais , Coelhos , Microtomografia por Raio-X/efeitos adversos
10.
11.
Sci Rep ; 11(1): 3565, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574422

RESUMO

Physiological systems vary in a day-night manner anticipating increased demand at a particular time. Heart is no exception. Cardiac output is primarily determined by heart rate and unsurprisingly this varies in a day-night manner and is higher during the day in the human (anticipating increased day-time demand). Although this is attributed to a day-night rhythm in post-translational ion channel regulation in the heart's pacemaker, the sinus node, by the autonomic nervous system, we investigated whether there is a day-night rhythm in transcription. RNAseq revealed that ~ 44% of the sinus node transcriptome (7134 of 16,387 transcripts) has a significant day-night rhythm. The data revealed the oscillating components of an intrinsic circadian clock. Presumably this clock (or perhaps the master circadian clock in the suprachiasmatic nucleus) is responsible for the rhythm observed in the transcriptional machinery, which in turn is responsible for the rhythm observed in the transcriptome. For example, there is a rhythm in transcripts responsible for the two principal pacemaker mechanisms (membrane and Ca2+ clocks), transcripts responsible for receptors and signalling pathways known to control pacemaking, transcripts from genes identified by GWAS as determinants of resting heart rate, and transcripts from genes responsible for familial and acquired sick sinus syndrome.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Coração/fisiologia , Transcriptoma/genética , Sistema Nervoso Autônomo/metabolismo , Estudo de Associação Genômica Ampla , Frequência Cardíaca/genética , Humanos , Canais Iônicos/genética , RNA-Seq , Transdução de Sinais/genética , Nó Sinoatrial/metabolismo , Sequenciamento do Exoma
12.
Heart Rhythm ; 18(5): 801-810, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33278629

RESUMO

BACKGROUND: Heart rate follows a diurnal variation, and slow heart rhythms occur primarily at night. OBJECTIVE: The lower heart rate during sleep is assumed to be neural in origin, but here we tested whether a day-night difference in intrinsic pacemaking is involved. METHODS: In vivo and in vitro electrocardiographic recordings, vagotomy, transgenics, quantitative polymerase chain reaction, Western blotting, immunohistochemistry, patch clamp, reporter bioluminescence recordings, and chromatin immunoprecipitation were used. RESULTS: The day-night difference in the average heart rate of mice was independent of fluctuations in average locomotor activity and persisted under pharmacological, surgical, and transgenic interruption of autonomic input to the heart. Spontaneous beating rate of isolated (ie, denervated) sinus node (SN) preparations exhibited a day-night rhythm concomitant with rhythmic messenger RNA expression of ion channels including hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4). In vitro studies demonstrated 24-hour rhythms in the human HCN4 promoter and the corresponding funny current. The day-night heart rate difference in mice was abolished by HCN block, both in vivo and in the isolated SN. Rhythmic expression of canonical circadian clock transcription factors, for example, Brain and muscle ARNT-Like 1 (BMAL1) and Cryptochrome (CRY) was identified in the SN and disruption of the local clock (by cardiomyocyte-specific knockout of Bmal1) abolished the day-night difference in Hcn4 and intrinsic heart rate. Chromatin immunoprecipitation revealed specific BMAL1 binding sites on Hcn4, linking the local clock with intrinsic rate control. CONCLUSION: The circadian variation in heart rate involves SN local clock-dependent Hcn4 rhythmicity. Data reveal a novel regulator of heart rate and mechanistic insight into bradycardia during sleep.


Assuntos
Bradicardia/genética , Relógios Circadianos/fisiologia , Eletrocardiografia/métodos , Regulação da Expressão Gênica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , RNA/genética , Nó Sinoatrial/fisiopatologia , Animais , Bradicardia/metabolismo , Bradicardia/fisiopatologia , Modelos Animais de Doenças , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/biossíntese , Camundongos
13.
Front Physiol ; 11: 546508, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343378

RESUMO

The function of the sinoatrial node (SAN), the pacemaker of the heart, declines with age, resulting in increased incidence of sinoatrial node dysfunction (SND) in older adults. The present study assesses potential ionic mechanisms underlying age associated SND. Two group studies have identified complex and various changes in some of membrane ion channels in aged rat SAN, the first group (Aging Study-1) indicates a considerable changes of gene expression with up-regulation of mRNA in ion channels of Cav1.2, Cav1.3 and KvLQT1, Kv4.2, and the Ca2+ handling proteins of SERCA2a, and down-regulation of Cav3.1, NCX, and HCN1 and the Ca2+-clock proteins of RYR2. The second group (Aging Study-2) suggests a different pattern of changes, including down regulation of Cav1.2, Cav1.3 and HCN4, and RYR2, and an increase of NCX and SERCA densities and proteins. Although both data sets shared a similar finding for some specific ion channels, such as down regulation of HCN4, NCX, and RYR2, there are contradictory changes for some other membrane ion channels, such as either up-regulation or down-regulation of Cav1.2, NCX and SERCA2a in aged rat SAN. The present study aims to test a hypothesis that age-related SND may arise from different ionic and molecular remodeling patterns. To test this hypothesis, a mathematical model of the electrical action potential of rat SAN myocytes was modified to simulate the functional impact of age-induced changes on membrane ion channels and intracellular Ca2+ handling as observed in Aging Study-1 and Aging Study-2. The role and relative importance of each individually remodeled ion channels and Ca2+-handling in the two datasets were evaluated. It was shown that the age-induced changes in ion channels and Ca2+-handling, based on either Aging Study-1 or Aging Study-2, produced similar bradycardic effects as manifested by a marked reduction in the heart rate (HR) that matched experimental observations. Further analysis showed that although the SND arose from an integrated action of all remodeling of ion channels and Ca2+-handling in both studies, it was the change to I CaL that played the most important influence.

14.
Front Physiol ; 11: 547577, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329016

RESUMO

Marked age- and development- related differences have been observed in morphology and characteristics of action potentials (AP) of neonatal and adult sinoatrial node (SAN) cells. These may be attributable to a different set of ion channel interactions between the different ages. However, the underlying mechanism(s) have yet to be elucidated. The objective of this study was to determine the mechanisms underlying different spontaneous APs and heart rate between neonatal and adult SAN cells of the rabbit heart by biophysical modeling approaches. A mathematical model of neonatal rabbit SAN cells was developed by modifying the current densities and/or kinetics of ion channels and transporters in an adult cell model based on available experimental data obtained from neonatal SAN cells. The single cell models were then incorporated into a multi-cellular, two-dimensional model of the intact SAN-atrium to investigate the functional impact of altered ion channels during maturation on pacemaking electrical activities and their conduction at the tissue level. Effects of the neurotransmitter acetylcholine on the pacemaking activities in neonatal cells were also investigated and compared to those in the adult. Our results showed: (1) the differences in ion channel properties between neonatal and adult SAN cells are able to account for differences in their APs and the heart rate, providing mechanistic insight into understanding the reduced pacemaking rate of the rabbit sinoatrial node during postnatal development; (2) in the 2D model of the intact SAN-atria, it was shown that cellular changes during postnatal development impaired pacemaking activity through increasing the activation time and reducing the conduction velocity across the SAN; (3) the neonatal SAN model, with its faster beating rates, showed a greater sensitivity to parasympathetic modulation in response to acetylcholine than did the adult model. These results provide novel insights into the understanding of the cellular mechanisms underlying the differences in the cardiac pacemaking activities of the neonatal and adult SAN.

15.
Sci Rep ; 10(1): 11279, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647133

RESUMO

Bradyarrhythmias are an important cause of mortality in heart failure and previous studies indicate a mechanistic role for electrical remodelling of the key pacemaking ion channel HCN4 in this process. Here we show that, in a mouse model of heart failure in which there is sinus bradycardia, there is upregulation of a microRNA (miR-370-3p), downregulation of the pacemaker ion channel, HCN4, and downregulation of the corresponding ionic current, If, in the sinus node. In vitro, exogenous miR-370-3p inhibits HCN4 mRNA and causes downregulation of HCN4 protein, downregulation of If, and bradycardia in the isolated sinus node. In vivo, intraperitoneal injection of an antimiR to miR-370-3p into heart failure mice silences miR-370-3p and restores HCN4 mRNA and protein and If in the sinus node and blunts the sinus bradycardia. In addition, it partially restores ventricular function and reduces mortality. This represents a novel approach to heart failure treatment.


Assuntos
Inativação Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , MicroRNAs/metabolismo , Nó Sinoatrial/fisiopatologia , Animais , Sítios de Ligação , Peso Corporal , Cardiomegalia , Biologia Computacional , Regulação para Baixo , Fibrose , Insuficiência Cardíaca/metabolismo , Frequência Cardíaca , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Ratos
16.
Front Physiol ; 11: 519382, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551824

RESUMO

Background: Endurance athletes are prone to bradyarrhythmias, which in the long-term may underscore the increased incidence of pacemaker implantation reported in this population. Our previous work in rodent models has shown training-induced sinus bradycardia to be due to microRNA (miR)-mediated transcriptional remodeling of the HCN4 channel, leading to a reduction of the "funny" (I f) current in the sinoatrial node (SAN). Objective: To test if genetic ablation of G-protein-gated inwardly rectifying potassium channel, also known as I KACh channels prevents sinus bradycardia induced by intensive exercise training in mice. Methods: Control wild-type (WT) and mice lacking GIRK4 (Girk4 -/-), an integral subunit of I KACh were assigned to trained or sedentary groups. Mice in the trained group underwent 1-h exercise swimming twice a day for 28 days, 7 days per week. We performed electrocardiogram recordings and echocardiography in both groups at baseline, during and after the training period. At training cessation, mice were euthanized and SAN tissues were isolated for patch clamp recordings in isolated SAN cells and molecular profiling by quantitative PCR (qPCR) and western blotting. Results: At swimming cessation trained WT mice presented with a significantly lower resting HR that was reversible by acute I KACh block whereas Girk4 -/- mice failed to develop a training-induced sinus bradycardia. In line with HR reduction, action potential rate, density of I f, as well as of T- and L-type Ca2+ currents (I CaT and I CaL ) were significantly reduced only in SAN cells obtained from WT-trained mice. I f reduction in WT mice was concomitant with downregulation of HCN4 transcript and protein, attributable to increased expression of corresponding repressor microRNAs (miRs) whereas reduced I CaL in WT mice was associated with reduced Cav1.3 protein levels. Strikingly, I KACh ablation suppressed all training-induced molecular remodeling observed in WT mice. Conclusion: Genetic ablation of cardiac I KACh in mice prevents exercise-induced sinus bradycardia by suppressing training induced remodeling of inward currents I f, I CaT and I CaL due in part to the prevention of miR-mediated transcriptional remodeling of HCN4 and likely post transcriptional remodeling of Cav1.3. Strategies targeting cardiac I KACh may therefore represent an alternative to pacemaker implantation for bradyarrhythmias seen in some veteran athletes.

17.
Physiology (Bethesda) ; 34(5): 314-326, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31389775

RESUMO

Athletes are prone to supraventricular rhythm disturbances including sinus bradycardia, heart block, and atrial fibrillation. Mechanistically, this is attributed to high vagal tone and cardiac electrical and structural remodeling. Here, we consider the supporting evidence for these three pro-arrhythmic mechanisms in athletic human cohorts and animal models, featuring current controversies, emerging data, and future directions of relevance to the translational research agenda.


Assuntos
Arritmias Cardíacas/fisiopatologia , Coração/fisiopatologia , Animais , Atletas , Humanos
18.
Sci Rep ; 9(1): 11781, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409881

RESUMO

In adult mammalian hearts, atrioventricular rings (AVRs) surround the atrial orifices of atrioventricular valves and are hotbed of ectopic activity in patients with focal atrial tachycardia. Experimental data offering mechanistic insights into initiation and maintenance of ectopic foci is lacking. We aimed to characterise AVRs in structurally normal rat hearts, identify arrhythmia predisposition and investigate mechanisms underlying arrhythmogenicity. Extracellular potential mapping and intracellular action potential recording techniques were used for electrophysiology, qPCR for gene and, Western blot and immunohistochemistry for protein expression. Conditions favouring ectopic foci were assessed by simulations. In right atrial preparations, sinus node (SN) was dominant and AVRs displayed 1:1 impulse conduction. Detaching SN unmasked ectopic pacemaking in AVRs and pacemaker action potentials were SN-like. Blocking pacemaker current If, and disrupting intracellular Ca2+ release, prolonged spontaneous cycle length in AVRs, indicating a role for SN-like pacemaker mechanisms. AVRs labelled positive for HCN4, and SERCA2a was comparable to SN. Pacemaking was potentiated by isoproterenol and abolished with carbachol and AVRs had abundant sympathetic nerve endings. ß2-adrenergic and M2-muscarinic receptor mRNA and ß2-receptor protein were comparable to SN. In computer simulations of a sick SN, ectopic foci in AVR were unmasked, causing transient suppression of SN pacemaking.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Marca-Passo Artificial , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Nó Sinoatrial/metabolismo , Taquicardia Supraventricular/genética , Potenciais de Ação/fisiologia , Animais , Nó Atrioventricular/metabolismo , Nó Atrioventricular/fisiopatologia , Sinalização do Cálcio/genética , Carbacol/farmacologia , Eletrofisiologia Cardíaca , Modelos Animais de Doenças , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Frequência Cardíaca/fisiologia , Humanos , Isoproterenol/farmacologia , Ratos , Receptor Muscarínico M2/genética , Receptores Adrenérgicos beta 2/genética , Nó Sinoatrial/fisiopatologia , Sistema Nervoso Simpático/efeitos dos fármacos , Taquicardia Supraventricular/metabolismo , Taquicardia Supraventricular/patologia
19.
Front Physiol ; 10: 826, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338036

RESUMO

Cardiovascular complications are common in type 1 diabetes mellitus (TIDM) and there is an increased risk of arrhythmias as a result of dysfunction of the cardiac conduction system (CCS). We have previously shown that, in vivo, there is a decrease in the heart rate and prolongation of the QRS complex in streptozotocin-induced type 1 diabetic rats indicating dysfunction of the CCS. The aim of this study was to investigate the function of the ex vivo CCS and key proteins that are involved in pacemaker mechanisms in TIDM. RR interval, PR interval and QRS complex duration were significantly increased in diabetic rats. The beating rate of the isolated sinoatrial node (SAN) preparation was significantly decreased in diabetic rats. The funny current density and cell capacitance were significantly decreased in diabetic nodal cells. Western blot showed that proteins involved in the function of the CCS were significantly decreased in diabetic rats, namely: HCN4, Cav1.3, Cav3.1, Cx45, and NCX1 in the SAN; RyR2 and NCX1 in the atrioventricular junction and Cx40, Cx43, Cx45, and RyR2 in the Purkinje network. We conclude that there are complex functional and cellular changes in the CCS in TIDM. The changes in the proteins involved in the function of this electrical system are expected to adversely affect action potential generation and propagation, and these changes are likely to be arrhythmogenic.

20.
Europace ; 21(6): 981-989, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753421

RESUMO

AIMS: Action potential duration (APD) alternans is an established precursor or arrhythmia and sudden cardiac death. Important differences in fundamental electrophysiological properties relevant to arrhythmia exist between experimental models and the diseased in vivo human heart. To investigate mechanisms of APD alternans using a novel approach combining intact heart and cellular cardiac electrophysiology in human in vivo. METHODS AND RESULTS: We developed a novel approach combining intact heart electrophysiological mapping during cardiac surgery with rapid on-site data analysis to guide myocardial biopsies for laboratory analysis, thereby linking repolarization dynamics observed at the organ level with underlying ion channel expression. Alternans-susceptible and alternans-resistant regions were identified by an incremental pacing protocol. Biopsies from these sites (n = 13) demonstrated greater RNA expression in Calsequestrin (CSQN) and Ryanodine (RyR) and ion channels underlying IK1 and Ito at alternans-susceptible sites. Electrical restitution properties (n = 7) showed no difference between alternans-susceptible and resistant sites, whereas spatial gradients of repolarization were greater in alternans-susceptible than in alternans-resistant sites (P = 0.001). The degree of histological fibrosis between alternans-susceptible and resistant sites was equivalent. Mathematical modelling of these changes indicated that both CSQN and RyR up-regulation are key determinants of APD alternans. CONCLUSION: Combined intact heart and cellular electrophysiology show that regions of myocardium in the in vivo human heart exhibiting APD alternans are associated with greater expression of CSQN and RyR and show no difference in restitution properties compared to non-alternans regions. In silico modelling identifies up-regulation and interaction of CSQN with RyR as a major mechanism underlying APD alternans.


Assuntos
Arritmias Cardíacas/fisiopatologia , Técnicas Eletrofisiológicas Cardíacas , Sistema de Condução Cardíaco/fisiopatologia , Potenciais de Ação , Biópsia , Calsequestrina/metabolismo , Feminino , Humanos , Canais Iônicos/metabolismo , Masculino , Pessoa de Meia-Idade , Rianodina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...