Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oral Oncol ; 149: 106688, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219706

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a highly prevalent malignancy worldwide, with a significant proportion of patients developing recurrent and/or metastatic (R/M) disease. Despite recent advances in therapy, the prognosis for patients with advanced HNSCC remains poor. Here, we present the case of a patient with recurrent metastatic HNSCC harboring an HRAS G12S mutation who achieved a durable response to treatment with tipifarnib, a selective inhibitor of farnesyltransferase. The patient was a 48-year-old woman who had previously received multiple lines of therapy with no significant clinical response. However, treatment with tipifarnib resulted in a durable partial response that lasted 8 months. Serial genomic and transcriptomic analyses demonstrated upregulation of YAP1 and AXL in metastatic lesions compared with the primary tumor, the evolution of the tumor microenvironment from an immune-enriched to a fibrotic subtype with increased angiogenesis, and activation of the PI3K/AKT/mTOR pathway in tipifarnib treatment. Lastly, in HRAS-mutated PDXs and in the syngeneic HRAS model, we demonstrated that tipifarnib efficacy is limited by activation of the AKT pathway, and dual treatment with tipifarnib and the PI3K inhibitor, BYL719, resulted in enhanced anti-tumor efficacy. Our case study highlights the potential of targeting HRAS mutations with tipifarnib in R/M HNSCC and identifies potential mechanisms of acquired resistance to tipifarnib, along with immuno-, chemo-, and radiation therapy. Preclinical results provide a firm foundation for further investigation of drug combinations of HRAS-and PI3K -targeting therapeutics in R/M HRAS-driven HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas Proto-Oncogênicas c-akt , Quinolonas , Feminino , Humanos , Pessoa de Meia-Idade , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Microambiente Tumoral , Proteínas Proto-Oncogênicas p21(ras)/genética
2.
Nat Commun ; 14(1): 4851, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563123

RESUMO

Actinobacteria possess unique ways to regulate the oxoglutarate metabolic node. Contrary to most organisms in which three enzymes compose the 2-oxoglutarate dehydrogenase complex (ODH), actinobacteria rely on a two-in-one protein (OdhA) in which both the oxidative decarboxylation and succinyl transferase steps are carried out by the same polypeptide. Here we describe high-resolution cryo-EM and crystallographic snapshots of representative enzymes from Mycobacterium smegmatis and Corynebacterium glutamicum, showing that OdhA is an 800-kDa homohexamer that assembles into a three-blade propeller shape. The obligate trimeric and dimeric states of the acyltransferase and dehydrogenase domains, respectively, are critical for maintaining the overall assembly, where both domains interact via subtle readjustments of their interfaces. Complexes obtained with substrate analogues, reaction products and allosteric regulators illustrate how these domains operate. Furthermore, we provide additional insights into the phosphorylation-dependent regulation of this enzymatic machinery by the signalling protein OdhI.


Assuntos
Corynebacterium glutamicum , Complexo Cetoglutarato Desidrogenase , Complexo Cetoglutarato Desidrogenase/metabolismo , Microscopia Crioeletrônica , Fosforilação , Corynebacterium glutamicum/metabolismo
3.
JTO Clin Res Rep ; 4(7): 100527, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37521368

RESUMO

Introduction: Relapse is common after resection of lung adenocarcinoma (LUAD). Features of the tumor microenvironment (TME) which influence postsurgical survival outcomes are poorly characterized. Here, we analyzed the TME of more than 1500 LUAD specimens to identify the relationship between B-cell infiltration and prognosis. Methods: Whole exome sequencing and bulk RNA sequencing were performed on LUADs and adjacent normal lung tissue. Relapse-free survival and overall survival (OS) were retrospectively correlated with characteristics of the tumor and TME in three data sets. Results: High B-cell content (defined as >10% B cells) was associated with improved OS in both a The Cancer Genome Atlas-resected LUAD data set (p = 0.01) and a separate institutional stage II LUAD data set (p = 0.04, median not reached versus 89.5 mo). A validation cohort consisting of pooled microarray data representing more than 1400 resected stage I to III LUADs confirmed the association between greater B-cell abundance, specifically higher B-cell expression, and longer postsurgical survival (median OS 90 versus 71 mo, p < 0.01). Relapse-free survival was longer for patients with adenocarcinomas with high B-cell content across data sets, but it did not reach statistical significance. Subcategorization of B-cell subsets indicated that high naive B-cell content was most predictive of survival. There was no correlation between programmed death-ligand 1 expression, lymphoid aggregates, or overall immune infiltrate density and survival outcomes across the cohorts. Conclusions: The growing adjuvant immunotherapy repertoire has increased the urgency for identifying prognostic and predictive biomarkers. Comprehensive profiling of more than 1500 LUADs suggests that high tumor-infiltrating B-cell content is a favorable prognostic marker.

4.
Front Oncol ; 13: 1274163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38318324

RESUMO

Cancer of unknown primary (CUP) represents a significant diagnostic and therapeutic challenge, being the third to fourth leading cause of cancer death, despite advances in diagnostic tools. This article presents a successful approach using a novel genomic analysis in the evaluation and treatment of a CUP patient, leveraging whole-exome sequencing (WES) and RNA sequencing (RNA-seq). The patient, with a history of multiple primary tumors including urothelial cancer, exhibited a history of rapid progression on empirical chemotherapy. The application of our approach identified a molecular target, characterized the tumor expression profile and the tumor microenvironment, and analyzed the origin of the tumor, leading to a tailored treatment. This resulted in a substantial radiological response across all metastatic sites and the predicted primary site of the tumor. We argue that a comprehensive genomic and molecular profiling approach, like the BostonGene© Tumor Portrait, can provide a more definitive, personalized treatment strategy, overcoming the limitations of current predictive assays. This approach offers a potential solution to an unmet clinical need for a standardized approach in identifying the tumor origin for the effective management of CUP.

5.
Front Oncol ; 12: 1006017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387205

RESUMO

Although immune checkpoint inhibitors (ICIs) are increasingly used as second-line treatments for urothelial cancer (UC), only a small proportion of patients respond. Therefore, understanding the mechanisms of response to ICIs is critical to improve clinical outcomes for UC patients. The tumor microenvironment (TME) is recognized as a key player in tumor progression and the response to certain anti-cancer treatments. This study aims to investigate the mechanism of response using integrated genomic and transcriptomic profiling of a UC patient who was part of the KEYNOTE-045 trial and showed an exceptional response to pembrolizumab. Diagnosed in 2014 and receiving first-line chemotherapy without success, the patient took part in the KEYNOTE-045 trial for 2 years. She showed dramatic improvement and has now been free of disease for over 6 years. Recently described by Bagaev et al., the Molecular Functional (MF) Portrait was utilized to dissect genomic and transcriptomic features of the patient's tumor and TME. The patient's tumor was characterized as Immune Desert, which is suggestive of a non-inflamed microenvironment. Integrated whole-exome sequencing (WES) and RNA sequencing (RNA-seq) analysis identified an ATM mutation and high TMB level (33.9 mut/mb), which are both positive biomarkers for ICI response. Analysis further revealed the presence of the APOBEC complex, indicating the potential for use of APOBEC signatures as predictive biomarkers for immunotherapy response. Overall, comprehensive characterization of the patient's tumor and TME with the MF Portrait revealed important insights that could potentially be hypothesis generating to identify clinically useful biomarkers and improve treatment for UC patients.

6.
Front Chem ; 10: 892284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795216

RESUMO

In vitro and in cell cultures, succinyl phosphonate (SP) and adipoyl phosphonate (AP) selectively target dehydrogenases of 2-oxoglutarate (OGDH, encoded by OGDH/OGDHL) and 2-oxoadipate (OADH, encoded by DHTKD1), respectively. To assess the selectivity in animals, the effects of SP, AP, and their membrane-penetrating triethyl esters (TESP and TEAP) on the rat brain metabolism and animal physiology are compared. Opposite effects of the OGDH and OADH inhibitors on activities of OGDH, malate dehydrogenase, glutamine synthetase, and levels of glutamate, lysine, citrulline, and carnosine are shown to result in distinct physiological responses. ECG is changed by AP/TEAP, whereas anxiety is increased by SP/TESP. The potential role of the ester moiety in the uncharged precursors of the 2-oxo acid dehydrogenase inhibitors is estimated. TMAP is shown to be less efficient than TEAP, in agreement with lower lipophilicity of TMAP vs. TEAP. Non-monotonous metabolic and physiological impacts of increasing OADH inhibition are revealed. Compared to the non-treated animals, strong inhibition of OADH decreases levels of tryptophan and beta-aminoisobutyrate and activities of malate dehydrogenase and pyruvate dehydrogenase, increasing the R-R interval of ECG. Thus, both metabolic and physiological actions of the OADH-directed inhibitors AP/TEAP are different from those of the OGDH-directed inhibitors SP/TESP, with the ethyl ester being more efficient than methyl ester.

7.
Front Med (Lausanne) ; 9: 896263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721081

RESUMO

Background: The DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) oxidizes 2-oxoadipate-a common intermediate of the lysine and tryptophan catabolism. The mostly low and cell-specific flux through these pathways, and similar activities of OADH and ubiquitously expressed 2-oxoglutarate dehydrogenase (OGDH), agree with often asymptomatic phenotypes of heterozygous mutations in the DHTKD1 gene. Nevertheless, OADH/DHTKD1 are linked to impaired insulin sensitivity, cardiovascular disease risks, and Charcot-Marie-Tooth neuropathy. We hypothesize that systemic significance of OADH relies on its generation of glutaryl residues for protein glutarylation. Using pharmacological inhibition of OADH and the animal model of spinal cord injury (SCI), we explore this hypothesis. Methods: The weight-drop model of SCI, a single intranasal administration of an OADH-directed inhibitor trimethyl adipoyl phosphonate (TMAP), and quantification of the associated metabolic changes in the rat brain employ established methods. Results: The TMAP-induced metabolic changes in the brain of the control, laminectomized (LE) and SCI rats are long-term and (patho)physiology-dependent. Increased glutarylation of the brain proteins, proportional to OADH expression in the control and LE rats, represents a long-term consequence of the OADH inhibition. The proportionality suggests autoglutarylation of OADH, supported by our mass-spectrometric identification of glutarylated K155 and K818 in recombinant human OADH. In SCI rats, TMAP increases glutarylation of the brain proteins more than OADH expression, inducing a strong perturbation in the brain glutathione metabolism. The redox metabolism is not perturbed by TMAP in LE animals, where the inhibition of OADH increases expression of deglutarylase sirtuin 5. The results reveal the glutarylation-imposed control of the brain glutathione metabolism. Glutarylation of the ODP2 subunit of pyruvate dehydrogenase complex at K451 is detected in the rat brain, linking the OADH function to the brain glucose oxidation essential for the redox state. Short-term inhibition of OADH by TMAP administration manifests in increased levels of tryptophan and decreased levels of sirtuins 5 and 3 in the brain. Conclusion: Pharmacological inhibition of OADH affects acylation system of the brain, causing long-term, (patho)physiology-dependent changes in the expression of OADH and sirtuin 5, protein glutarylation and glutathione metabolism. The identified glutarylation of ODP2 subunit of pyruvate dehydrogenase complex provides a molecular mechanism of the OADH association with diabetes.

8.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35215295

RESUMO

Specific inhibitors of mitochondrial 2-oxoglutarate dehydrogenase (OGDH) are administered to animals to model the downregulation of the enzyme as observed in neurodegenerative diseases. Comparison of the effects of succinyl phosphonate (SP, 0.02 mmol/kg) and its uncharged precursor, triethyl succinyl phosphonate (TESP, 0.02 and 0.1 mmol/kg) reveals a biphasic response of the rat brain metabolism and physiology to increasing perturbation of OGDH function. At the low (TE)SP dose, glutamate, NAD+, and the activities of dehydrogenases of 2-oxoglutarate and malate increase, followed by their decreases at the high TESP dose. The complementary changes, i.e., an initial decrease followed by growth, are demonstrated by activities of pyruvate dehydrogenase and glutamine synthetase, and levels of oxidized glutathione and citrulline. While most of these indicators return to control levels at the high TESP dose, OGDH activity decreases and oxidized glutathione increases, compared to their control values. The first phase of metabolic perturbations does not cause significant physiological changes, but in the second phase, the ECG parameters and behavior reveal decreased adaptability and increased anxiety. Thus, lower levels of OGDH inhibition are compensated by the rearranged metabolic network, while the increased levels induce a metabolic switch to a lower redox state of the brain, associated with elevated stress of the animals.

9.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819376

RESUMO

α-oxoacid dehydrogenase complexes are large, tripartite enzymatic machineries carrying out key reactions in central metabolism. Extremely conserved across the tree of life, they have been, so far, all considered to be structured around a high-molecular weight hollow core, consisting of up to 60 subunits of the acyltransferase component. We provide here evidence that Actinobacteria break the rule by possessing an acetyltranferase component reduced to its minimally active, trimeric unit, characterized by a unique C-terminal helix bearing an actinobacterial specific insertion that precludes larger protein oligomerization. This particular feature, together with the presence of an odhA gene coding for both the decarboxylase and the acyltransferase domains on the same polypetide, is spread over Actinobacteria and reflects the association of PDH and ODH into a single physical complex. Considering the central role of the pyruvate and 2-oxoglutarate nodes in central metabolism, our findings pave the way to both therapeutic and metabolic engineering applications.


Assuntos
Actinobacteria/metabolismo , Complexo Cetoglutarato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Bactérias/metabolismo , Fenômenos Bioquímicos , Biologia Computacional , Cristalografia por Raios X , Cinética , Conformação Molecular , Mycobacterium tuberculosis/metabolismo , Plasmídeos/metabolismo , Ácido Pirúvico
10.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34451834

RESUMO

The disturbed metabolism of vitamins B1 or B6, which are essential for neurotransmitters homeostasis, may cause seizures. Our study aims at revealing therapeutic potential of vitamins B1 and B6 by estimating the short- and long-term effects of their combined administration with the seizure inductor pentylenetetrazole (PTZ). The PTZ dose dependence of a seizure and its parameters according to modified Racine's scale, along with delayed physiological and biochemical consequences the next day after the seizure are assessed regarding sexual dimorphism in epilepsy. PTZ sensitivity is stronger in the female than the male rats. The next day after a seizure, sex differences in behavior and brain biochemistry arise. The induced sex differences in anxiety and locomotor activity correspond to the disappearance of sex differences in the brain aspartate and alanine, with appearance of those in glutamate and glutamine. PTZ decreases the brain malate dehydrogenase activity and urea in the males and the phenylalanine in the females. The administration of vitamins B1 and B6 24 h before PTZ delays a seizure in female rats only. This desensitization is not observed at short intervals (0.5-2 h) between the administration of the vitamins and PTZ. With the increasing interval, the pyridoxal kinase (PLK) activity in the female brain decreases, suggesting that the PLK downregulation by vitamins contributes to the desensitization. The delayed effects of vitamins and/or PTZ are mostly sex-specific and interacting. Our findings on the sex differences in sensitivity to epileptogenic factors, action of vitamins B1/B6 and associated biochemical events have medical implications.

11.
Front Mol Neurosci ; 14: 620593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867932

RESUMO

Our study aims at developing knowledge-based strategies minimizing chronic changes in the brain after severe spinal cord injury (SCI). The SCI-induced long-term metabolic alterations and their reactivity to treatments shortly after the injury are characterized in rats. Eight weeks after severe SCI, significant mitochondrial lesions outside the injured area are demonstrated in the spinal cord and cerebral cortex. Among the six tested enzymes essential for the TCA cycle and amino acid metabolism, mitochondrial 2-oxoglutarate dehydrogenase complex (OGDHC) is the most affected one. SCI downregulates this complex by 90% in the spinal cord and 30% in the cerebral cortex. This is associated with the tissue-specific changes in other enzymes of the OGDHC network. Single administrations of a pro-activator (thiamine, or vitamin B1, 1.2 mmol/kg) or a synthetic pro-inhibitor (triethyl glutaryl phosphonate, TEGP, 0.02 mmol/kg) of OGDHC within 15-20 h after SCI are tested as protective strategies. The biochemical and physiological assessments 8 weeks after SCI reveal that thiamine, but not TEGP, alleviates the SCI-induced perturbations in the rat brain metabolism, accompanied by the decreased expression of (acetyl)p53, increased expression of sirtuin 5 and an 18% improvement in the locomotor recovery. Treatment of the non-operated rats with the OGDHC pro-inhibitor TEGP increases the p53 acetylation in the brain, approaching the brain metabolic profiles to those after SCI. Our data testify to an important contribution of the OGDHC regulation to the chronic consequences of SCI and their control by p53 and sirtuin 5.

12.
J Struct Biol ; 208(2): 182-190, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31476368

RESUMO

Mycobacterial KGD, the thiamine diphosphate (ThDP)-dependent E1o component of the 2-oxoglutarate dehydrogenase complex (OGDHC), is known to undergo significant conformational changes during catalysis with two distinct conformational states, previously named as the early and late state. In this work, we employ two phosphonate analogues of 2-oxoglutarate (OG), i.e. succinyl phosphonate (SP) and phosphono ethyl succinyl phosphonate (PESP), as tools to isolate the first catalytic steps and understand the significance of conformational transitions for the enzyme regulation. The kinetics showed a more efficient inhibition of mycobacterial E1o by SP (Ki 0.043 ±â€¯0.013 mM) than PESP (Ki 0.88 ±â€¯0.28 mM), consistent with the different circular dichroism spectra of the corresponding complexes. PESP allowed us to get crystallographic snapshots of the Michaelis-like complex, the first one for 2-oxo acid dehydrogenases, followed by the covalent adduction of the inhibitor to ThDP, mimicking the pre-decarboxylation complex. In addition, covalent ThDP-phosphonate complexes obtained with both compounds by co-crystallization were in the late conformational state, probably corresponding to slowly dissociating enzyme-inhibitor complexes. We discuss the relevance of these findings in terms of regulatory features of the mycobacterial E1o enzymes, and in the perspective of developing tools for species-specific metabolic regulation.


Assuntos
Complexo Cetoglutarato Desidrogenase/metabolismo , Mycobacterium/enzimologia , Domínio Catalítico , Complexo Cetoglutarato Desidrogenase/química , Ácidos Cetoglutáricos/metabolismo , Cinética , Mycobacterium/metabolismo , Organofosfonatos/metabolismo , Oxirredutases/metabolismo , Ligação Proteica , Succinatos/metabolismo , Tiamina Pirofosfato/metabolismo
13.
Mitochondrion ; 47: 10-17, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31009750

RESUMO

We present a 14-year-old girl with loss of motor functions, tetraplegia, epilepsy and nystagmus, caused by a novel heteroplasmic m.641A>T transition in an evolutionary conserved region of mitochondrial genome, affecting the aminoacyl stem of mitochondrial tRNA-Phe. In silico prediction, respirometry, Western blot and enzymatic analyses in skin fibroblasts support the pathogenicity of the m.641A>T substitution. This is the 18th MT-TF point mutation associated with a mitochondrial disorder. The onset and the severity of the disease, however, is unique in this case and broadens the clinical picture related to mutations of mitochondrial tRNA-Phe.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Genes Mitocondriais , Doenças Genéticas Inatas/genética , Mutação Puntual , RNA Mitocondrial/genética , RNA de Transferência de Fenilalanina/genética , Adolescente , Feminino , Humanos , Mitocôndrias/genética
14.
Front Med (Lausanne) ; 4: 249, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379782

RESUMO

Severe spinal cord injuries (SCIs) result in chronic neuroinflammation in the brain, associated with the development of cognitive and behavioral impairments. Nitric oxide (NO•) is a gaseous messenger involved in neuronal signaling and inflammation, contributing to nitrosative stress under dysregulated production of reactive nitrogen species. In this work, biochemical changes induced in the cerebral cortex of rats 8 weeks after SCI are assessed by quantification of the levels of amino acids participating in the NO• and glutathione metabolism. The contribution of the injury-induced neurodegeneration is revealed by comparison of the SCI- and laminectomy (LE)-subjected animals. Effects of the operative interventions are assessed by comparison of the operated (LE/SCI) and non-operated animals. Lower ratios of citrulline (Cit) to arginine (Arg) or Cit to ornithine and a more profound decrease in the ratio of lysine to glycine distinguish SCI animals from those after LE. The data suggest decreased NO• production from both Arg and homoarginine in the cortex 8 weeks after SCI. Both LE and SCI groups show a strong decrease in the level of cortex glutathione. The neurotropic, anti-inflammatory, and antioxidant actions of thiamine (vitamin B1) prompted us to study the thiamine effects on the SCI-induced changes in the NO• and glutathione metabolism. A thiamine injection (400 mg/kg intraperitoneally) within 24 h after SCI abrogates the changes in the cerebral cortex amino acids related to NO•. Thiamine-induced normalization of the brain glutathione levels after LE and SCI may involve increased supply of glutamate for glutathione biosynthesis. Thus, thiamine protects from sequelae of SCI on NO•-related amino acids and glutathione in cerebral cortex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...