Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cogn Neurosci ; 35(9): 1493-1507, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37432748

RESUMO

Recent EEG studies have investigated basic principles of feature-based attention by means of frequency-tagged random dot kinematograms in which different colors are simultaneously presented at different temporal frequencies to elicit steady-state visual evoked potentials (SSVEPs). These experiments consistently showed global facilitation of the to-be-attended random dot kinematogram-a basic principle of feature-based attention. SSVEP source estimation suggested that posterior visual cortex from V1 to area hMT+/V5 is broadly activated by frequency-tagged stimuli. What is presently unknown is whether the feature-based attentional facilitation of SSVEPs is a rather unspecific neural response including all visual areas that follow the "on/off," or whether SSVEP feature-based amplitude enhancements are driven by activity in visual areas most sensitive to a specific feature, such as V4v in the case of color. Here, we leverage multimodal SSVEP-fMRI recordings in human participants and a multidimensional feature-based attention paradigm to investigate this question. Attending to shape produced significantly greater SSVEP-BOLD covariation in primary visual cortex compared with color. SSVEP-BOLD covariation during color selection increased along the visual hierarchy, with greatest values in areas V3 and V4. Importantly, in area hMT+/V5, we found no differences between shape and color selection. Results suggest that SSVEP amplitude enhancements in feature-based attention is not an unspecific enhancement of neural activity in all visual areas following the "on/off." These findings open new avenues to investigating neural dynamics of competitive interactions in specific visual areas sensitive to a certain feature in a more economical way and better temporal resolution compared with fMRI.


Assuntos
Potenciais Evocados Visuais , Saturação de Oxigênio , Humanos , Estimulação Luminosa/métodos , Eletroencefalografia/métodos , Atenção/fisiologia
2.
Int J Psychophysiol ; 189: 42-56, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148977

RESUMO

Neurofeedback procedures are attracting increasing attention in the neuroscience community. Based on the principle that participants, through suitable feedback, may learn to affect specific aspects of their brain activity, neurofeedback interventions have been applied to basic research, translational, and clinical science. A large segment of the available empirical research as well as review articles have focused on the extent to which neurofeedback interventions affect mental health outcomes, cognitive capacity, aging, and other complex behaviors. Another segment has aimed to characterize the extent to which neurofeedback affects the targeted neural processes. At this time, there is no current systematic review of the effects of neurofeedback on healthy participants' performance in experimental tasks. Such a review is relevant in this rapidly evolving field because changes in experimental task performance are traditionally considered a hallmark of changing neurocognitive processes, often established in neurotypical individuals. This systematic review addresses this gap in the literature using the PRISMA method, building on earlier reviews on the same topic. Empirical studies using EEG or fMRI to alter brain processes linked to established cognitive and affective laboratory tasks were reviewed. Systematic quality assessment and z-curve analyses were also conducted. Substantial variability was found regarding the study designs used, the implementation of the feedback, and the neural targets of feedback. Importantly, only a minority of the studies reported statistically meaningful effects of neurofeedback on performance in cognitive and affective tasks. The z-curve analyses found no evidence for reporting bias or unsound research practices. Quality control and effect size analyses showed few systematic relations between study characteristics such as sample size or experimental control on the one hand and outcome on the other. Overall, the present study does not support strong effects of NFT on performance in laboratory tasks. Implications for future work are discussed.


Assuntos
Neurorretroalimentação , Humanos , Neurorretroalimentação/métodos , Encéfalo/fisiologia , Aprendizagem , Mapeamento Encefálico/métodos , Análise e Desempenho de Tarefas
3.
Psychophysiology ; 60(8): e14287, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36906882

RESUMO

Steady-state visual evoked potentials (ssVEPs) are an established tool for assessing visuocortical responses in visual perception and attention. They have the same temporal frequency characteristics as a periodically modulated stimulus (e.g., in contrast or luminance) that drives them. It has been hypothesized that the amplitude of a given ssVEP may depend on the shape of the stimulus modulation function, but the size and robustness of these effects is not well established. The current study systematically compared the effect of the two most common functions in the ssVEP literature, square-wave and sine-wave functions. Across two laboratories, we presented mid-complex color patterns to 30 participants with square-wave or sine-wave contrast modulation and at different driving frequencies (6 Hz, 8.57 Hz, 15 Hz). When ssVEPs were analyzed independently for the samples, with each laboratory's standard processing pipeline, ssVEP amplitudes in both samples decreased at higher driving frequencies and square-wave modulation evoked higher amplitudes at lower frequencies (i.e., 6 Hz, 8.57 Hz) compared to sine-wave modulation. These effects were replicated when samples were aggregated and analyzed with the same processing pipeline. In addition, when using signal-to-noise ratios as outcome measures, this joint analysis indicated a somewhat weaker effect of increased ssVEP amplitudes to square-wave modulation at 15 Hz. The present study suggests that square-wave modulation should be used in ssVEP research when the goal is to maximize signal amplitude or signal-to-noise ratio. Given effects of modulation function across laboratories, and data processing pipelines, the findings appear robust to differences in data collection and analysis.


Assuntos
Eletroencefalografia , Potenciais Evocados Visuais , Humanos , Estimulação Luminosa , Percepção Visual/fisiologia , Atenção/fisiologia
4.
J Exp Psychol Hum Percept Perform ; 47(3): 387-401, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33475419

RESUMO

The extent to which visuocortical processing is altered when observers learn to categorize novel visual stimuli via labeling is not well understood. The present investigation used steady state visual evoked potential (ssVEP) frequency tagging to test the hypothesis that learning to categorize novel objects via labeling prompts a competitive advantage over concurrently presented stimuli. In the learning (label-training) phase, participants (n = 24) categorized objects according to two different species labels and faces according to gender. A control group (n = 26) viewed the same stimuli without label learning. Before and after learning, faces and objects were superimposed and viewed concurrently while periodically turned on and off at unique temporal rates (5/s or 6/s). The spectral power of the ssVEP at each frequency was projected to an L2 (minimum) norm estimated source space, and competition between faces and objects was compared using permutation-controlled mass univariate t tests. Results showed that, only in the training group, learning to label novel objects led to a competitive advantage over faces across a network of occipito-temporal and fronto-parietal cortical regions. These changes were more pronounced in participants showing more improvement across the label learning phase. Together, the findings support the notion that learning to label novel object categories affects neural competition though recurrent neural interactions in regions commonly associated with visual perception and selective attention. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Assuntos
Potenciais Evocados Visuais , Percepção Visual , Atenção , Humanos , Aprendizagem , Estimulação Luminosa
5.
Neuroimage ; 189: 878-885, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30703522

RESUMO

The human visual system selects information from dense and complex streams of spatiotemporal input. This selection process is aided by prior knowledge of the features, location, and temporal proximity of an upcoming stimulus. In the laboratory, this knowledge is often conveyed by cues, preceding a task-relevant target stimulus. Response speed in cued selection tasks varies within and across participants and is often thought to index efficient selection of a cued feature, location, or moment in time. The present study used a reverse correlation approach to identify neural predictors of efficient target discrimination: Participants identified the orientation of a sinusoidal grating, which was presented in one hemifield following the presentation of bilateral visual cues that carried temporal but not spatial information about the target. Across different analytic approaches, faster target responses were predicted by larger alpha power preceding the target. These results suggest that heightened pre-target alpha power during a cue period may index a state that is beneficial for subsequent target processing. Our findings are broadly consistent with models that emphasize capacity sharing across time, as well as models that link alpha oscillations to temporal predictions regarding upcoming events.


Assuntos
Ritmo alfa/fisiologia , Córtex Cerebral/fisiologia , Discriminação Psicológica/fisiologia , Eletroencefalografia/métodos , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Sinais (Psicologia) , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia , Adulto Jovem
6.
Psychophysiology ; 56(6): e13332, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30663061

RESUMO

Visual features associated with a task and those that predict noxious events both prompt selectively heightened visuocortical responses. Conflicting views exist regarding how the competition between a task-related and a threat-related feature is resolved when they co-occur in time and space. Utilizing aversive classical Pavlovian conditioning, we investigated the visuocortical representation of two simultaneously presented, fully overlapping visual stimuli. Isoluminant red and green random dot kinematogram (RDK) stimuli were flickered at distinct tagging frequencies (8.57 Hz, 12 Hz) to elicit distinguishable steady-state visual evoked potentials (ssVEPs). Occasional coherent motion events prompted a motor response (task) or predicted a noxious noise (threat). These events occurred either in the green (task cue), the red (threat cue), or in both RDKs simultaneously. In the initial habituation phase, participants responded to coherent motion of the green RDK with a key press, but no loud noise was presented at any time. Here, selective amplification was seen for the task-relevant (green) RDK, and interference was observed when both RDKs simultaneously showed coherent motion. Upon pairing the threat cue with the noxious noise in the subsequent acquisition phase, the threat cue-evoked ssVEP (red RDK) was also amplified, but this amplification did not interact with amplification of the task cue or alter the behavioral or visuocortical interference effect observed during simultaneous coherent motion. Although competing feature conjunctions resulted in interference in the visual cortex, the acquisition of a bias toward an individual threat-related feature did not result in additional cost effects.


Assuntos
Atenção , Condicionamento Clássico , Análise e Desempenho de Tarefas , Adolescente , Eletroencefalografia , Potenciais Evocados Visuais , Feminino , Humanos , Masculino , Estimulação Luminosa , Desempenho Psicomotor
7.
Cortex ; 111: 35-50, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30447483

RESUMO

The processing of facial expressions is often studied using static pictorial cues. Recent work, however, suggests that viewing changing expressions more robustly evokes physiological responses. Here, we examined the sensitivity of steady-state visual evoked potentials and intrinsic oscillatory brain activity to transient emotional changes in facial expressions. Twenty-two participants viewed sequences of grayscale faces periodically turned on and off at a rate of 17.5 Hz, to evoke flicker steady-state visual evoked potentials (ssVEPs) in visual cortex. Each sequence began with a neutral face (flickering for 2290 msec), immediately followed by a face from the same actor (also flickering for 2290 msec) with one of four expressions (happy, angry, fearful, or another neutral expression), followed by the initially presented neutral face (flickering for 1140 msec). The amplitude of the ssVEP and the power of intrinsic brain oscillations were analyzed, comparing the four expression-change conditions. We found a transient perturbation (reduction) of the ssVEP that was more pronounced after the neutral-to-angry change compared to the other conditions, at right posterior sensors. Induced alpha-band (8-13 Hz) power was reduced compared to baseline after each change. This reduction showed a central-occipital topography and was strongest in the subtlest and rarest neutral-to-neutral condition. Thus, the ssVEP indexed involvement of face-sensitive cortical areas in decoding affective expressions, whereas mid-occipital alpha power reduction reflected condition frequency rather than expression-specific processing, consistent with the role of alpha power changes in selective attention.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiologia , Emoções/fisiologia , Potenciais Evocados Visuais/fisiologia , Expressão Facial , Córtex Visual/fisiologia , Adolescente , Adulto , Atenção/fisiologia , Sinais (Psicologia) , Eletroencefalografia , Reconhecimento Facial/fisiologia , Feminino , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...