Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 3(4): e1601556, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28435870

RESUMO

Mucoadhesive particles (MAP) have been widely explored for pulmonary drug delivery because of their perceived benefits in improving particle residence in the lungs. However, retention of particles adhesively trapped in airway mucus may be limited by physiologic mucus clearance mechanisms. In contrast, particles that avoid mucoadhesion and have diameters smaller than mucus mesh spacings rapidly penetrate mucus layers [mucus-penetrating particles (MPP)], which we hypothesized would provide prolonged lung retention compared to MAP. We compared in vivo behaviors of variously sized, polystyrene-based MAP and MPP in the lungs following inhalation. MAP, regardless of particle size, were aggregated and poorly distributed throughout the airways, leading to rapid clearance from the lungs. Conversely, MPP as large as 300 nm exhibited uniform distribution and markedly enhanced retention compared to size-matched MAP. On the basis of these findings, we formulated biodegradable MPP (b-MPP) with an average diameter of <300 nm and examined their behavior following inhalation relative to similarly sized biodegradable MAP (b-MAP). Although b-MPP diffused rapidly through human airway mucus ex vivo, b-MAP did not. Rapid b-MPP movements in mucus ex vivo correlated to a more uniform distribution within the airways and enhanced lung retention time as compared to b-MAP. Furthermore, inhalation of b-MPP loaded with dexamethasone sodium phosphate (DP) significantly reduced inflammation in a mouse model of acute lung inflammation compared to both carrier-free DP and DP-loaded MAP. These studies provide a careful head-to-head comparison of MAP versus MPP following inhalation and challenge a long-standing dogma that favored the use of MAP for pulmonary drug delivery.


Assuntos
Plásticos Biodegradáveis , Dexametasona , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Pneumonia/tratamento farmacológico , Mucosa Respiratória/metabolismo , Administração por Inalação , Animais , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/farmacologia , Dexametasona/química , Dexametasona/farmacocinética , Dexametasona/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia/metabolismo , Pneumonia/patologia , Mucosa Respiratória/patologia
2.
ACS Nano ; 9(9): 9217-27, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26301576

RESUMO

Achieving sustained drug delivery to mucosal surfaces is a major challenge due to the presence of the protective mucus layer that serves to trap and rapidly remove foreign particulates. Nanoparticles engineered to rapidly penetrate mucosal barriers (mucus-penetrating particles, "MPP") have shown promise for improving drug distribution, retention and efficacy at mucosal surfaces. MPP are densely coated with polyethylene glycol (PEG), which shields the nanoparticle core from adhesive interactions with mucus. However, the PEG density required to impart the "stealth" properties to nanoparticles in mucus, and thus, uniform distribution in vivo, is still unknown. We prepared biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles with a range of PEG surface densities by blending various ratios of a diblock copolymer of PLGA and 5 kDa poly(ethylene glycol) (PLGA-PEG5k) with PLGA. We then evaluated the impact of PEG surface density, measured using an (1)H NMR method, on mucin binding in vitro, nanoparticle transport in freshly obtained human cervicovaginal mucus (CVM) ex vivo, and nanoparticle distribution in the mouse cervicovaginal tract in vivo. We found that at least 5% PEG was required to effectively shield the nanoparticle core from interacting with mucus components in vitro and ex vivo, thus leading to enhanced nanoparticle distribution throughout the mouse vagina in vivo. We then demonstrated that biodegradable MPP could be formulated from blends of PLGA and PLGA-PEG polymers of various molecular weights, and that these MPP provide tunable drug loading and drug release rates and durations. Overall, we describe a methodology for rationally designing biodegradable, drug-loaded MPP for more uniform delivery to the vagina.


Assuntos
Sistemas de Liberação de Medicamentos , Muco/efeitos dos fármacos , Nanopartículas/administração & dosagem , Animais , Humanos , Camundongos , Muco/química , Nanopartículas/química , Paclitaxel/administração & dosagem , Paclitaxel/química , Polietilenoglicóis/química
3.
J Control Release ; 201: 32-40, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25576786

RESUMO

Immunologic graft rejection is one of the main causes of short and long-term graft failure in corneal transplantation. Steroids are the most commonly used immunosuppressive agents for postoperative management and prevention of corneal graft rejection. However, steroids delivered in eye drops are rapidly cleared from the surface of the eye, so the required frequency of dosing for corneal graft rejection management can be as high as once every 2h. Additionally, these eye drops are often prescribed for daily use for 1 year or longer, which can result in poor patient compliance and steroid-related side effects. Here, we report a biodegradable nanoparticle system composed of Generally Regarded as Safe (GRAS) materials that can provide sustained release of corticosteroids to prevent corneal graft rejection following subconjunctival injection provided initially during transplant surgery. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing dexamethasone sodium phosphate (DSP) exhibited a size of 200 nm, 8 wt.% drug loading, and sustained drug release over 15 days in vitro under sink conditions. DSP-loaded nanoparticles provided sustained ocular drug levels for at least 7 days after subconjunctival administration in rats, and prevented corneal allograft rejection over the entire 9-week study when administered weekly. In contrast, control treatment groups that received weekly injections of either placebo nanoparticles, saline, or DSP in solution demonstrated corneal graft rejection accompanied by severe corneal edema, neovascularization and opacity that occurred in ≤ 4 weeks. Local controlled release of corticosteroids may reduce the rate of corneal graft rejection, perhaps especially in the days immediately following surgery when risk of rejection is highest and when typical steroid eye drop administration requirements are particularly onerous.


Assuntos
Transplante de Córnea , Dexametasona/análogos & derivados , Glucocorticoides/administração & dosagem , Rejeição de Enxerto/prevenção & controle , Nanopartículas/administração & dosagem , Polímeros/administração & dosagem , Aloenxertos , Animais , Dexametasona/administração & dosagem , Dexametasona/sangue , Dexametasona/química , Dexametasona/farmacocinética , Liberação Controlada de Fármacos , Olho/metabolismo , Glucocorticoides/sangue , Glucocorticoides/química , Glucocorticoides/farmacocinética , Masculino , Nanopartículas/química , Polímeros/química , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew , Ratos Sprague-Dawley
4.
J Mater Chem B ; 2(46): 8165-8173, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25485114

RESUMO

Complex genetic mutations are common in brain cancer, making gene therapy an attractive approach to repair or modulate altered genes and cellular pathways. Non-viral gene vectors can offer DNA delivery without the risk of immunogenicity and/or insertional mutagenesis that are common with viral vectors. We developed pH-responsive DNA nanoparticles, CH12K18PEG5k, by inserting a poly-L-histidine segment between PEG and poly-L-lysine to engineer a triblock copolymer. CH12K18PEG5k DNA nanoparticles trafficked through clathrin-dependent endocytosis (CME) as the primary pathway in mouse glioblastoma (GBM) cells, and protected plasmid DNA from both DNase-mediated and acidic lysosomal degradation. CH12K18PEG5k DNA nanoparticles effectively silenced a tumor-specific transgene (firefly luciferase) following direct injection into mouse intracranial GBM. Toxicity and histological analysis showed no evidence of acute or delayed inflammatory responses. These results demonstrate the utility of using this DNA nanoparticle-based technology for delivering genes to tumor cells as a possible therapeutic approach for patients with brain cancer.

5.
J Control Release ; 180: 125-33, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24556417

RESUMO

Thymulin has been shown to present anti-inflammatory and anti-fibrotic properties in experimental lung diseases. We hypothesized that a biologically active thymulin analog gene, methionine serum thymus factor, delivered by highly compacted DNA nanoparticles may prevent lung inflammation and remodeling in a mouse model of allergic asthma. The DNA nanoparticles are composed of a single molecule of plasmid DNA compacted with block copolymers of poly-L-lysine and polyethylene glycol (CK30PEG), which have been found safe in a human phase I/II clinical trial. Thymulin plasmids were detected in the lungs of ovalbumin-challenged asthmatic mice up to 27days after administration of DNA nanoparticles carrying thymulin plasmids. A single dose of DNA nanoparticles carrying thymulin plasmids prevented lung inflammation, collagen deposition and smooth muscle hypertrophy in the lungs of a murine model of ovalbumin-challenged allergic asthma, leading to improved lung mechanics. In the present model of chronic allergic asthma, highly compacted DNA nanoparticles using thymulin analog gene modulated the inflammatory and remodeling processes improving lung mechanics.


Assuntos
Remodelação das Vias Aéreas , Asma/genética , Asma/terapia , DNA/uso terapêutico , Pulmão/patologia , Nanopartículas/uso terapêutico , Fator Tímico Circulante/genética , Remodelação das Vias Aéreas/genética , Remodelação das Vias Aéreas/imunologia , Animais , Asma/imunologia , Asma/patologia , DNA/química , DNA/genética , Terapia Genética , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Plasmídeos/química , Plasmídeos/genética , Plasmídeos/uso terapêutico , Fator Tímico Circulante/análise
6.
J Control Release ; 178: 8-17, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24440664

RESUMO

Inhaled gene carriers must penetrate the highly viscoelastic and adhesive mucus barrier in the airway in order to overcome rapid mucociliary clearance and reach the underlying epithelium; however, even the most widely used viral gene carriers are unable to efficiently do so. We developed two polymeric gene carriers that compact plasmid DNA into small and highly stable nanoparticles with dense polyethylene glycol (PEG) surface coatings. These highly compacted, densely PEG-coated DNA nanoparticles rapidly penetrate human cystic fibrosis (CF) mucus ex vivo and mouse airway mucus ex situ. Intranasal administration of the mucus penetrating DNA nanoparticles greatly enhanced particle distribution, retention and gene transfer in the mouse lung airways compared to conventional gene carriers. Successful delivery of a full-length plasmid encoding the cystic fibrosis transmembrane conductance regulator protein was achieved in the mouse lungs and airway cells, including a primary culture of mucus-covered human airway epithelium grown at air-liquid interface, without causing acute inflammation or toxicity. Highly compacted mucus penetrating DNA nanoparticles hold promise for lung gene therapy.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , DNA/administração & dosagem , Técnicas de Transferência de Genes , Pulmão/metabolismo , Muco/metabolismo , Nanopartículas/administração & dosagem , Administração Intranasal , Adulto , Animais , Células CHO , Cricetulus , Fibrose Cística/metabolismo , Fibrose Cística/terapia , DNA/química , Esôfago/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Terapia Genética , Humanos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Polietilenoglicóis/química , Polietilenoimina/química , Polilisina/química , Adulto Jovem
7.
J Control Release ; 170(2): 279-86, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23751567

RESUMO

Mucus typically traps and rapidly removes foreign particles from the airways, gastrointestinal tract, nasopharynx, female reproductive tract and the surface of the eye. Nanoparticles capable of rapid penetration through mucus can potentially avoid rapid clearance, and open significant opportunities for controlled drug delivery at mucosal surfaces. Here, we report an industrially scalable emulsification method to produce biodegradable mucus-penetrating particles (MPP). The emulsification of diblock copolymers of poly(lactic-co-glycolic acid) and polyethylene glycol (PLGA-PEG) using low molecular weight (MW) emulsifiers forms dense brush PEG coatings on nanoparticles that allow rapid nanoparticle penetration through fresh undiluted human mucus. In comparison, conventional high MW emulsifiers, such as polyvinyl alcohol (PVA), interrupts the PEG coating on nanoparticles, resulting in their immobilization in mucus owing to adhesive interactions with mucus mesh elements. PLGA-PEG nanoparticles with a wide range of PEG MW (1, 2, 5, and 10 kDa), prepared by the emulsification method using low MW emulsifiers, all rapidly penetrated mucus. A range of drugs, from hydrophobic small molecules to hydrophilic large biologics, can be efficiently loaded into biodegradable MPP using the method described. This readily scalable method should facilitate the production of MPP products for mucosal drug delivery, as well as potentially longer-circulating particles following intravenous administration.


Assuntos
Sistemas de Liberação de Medicamentos , Muco/química , Nanopartículas/química , Polietilenoglicóis/química , Poliglactina 910/química , Álcool de Polivinil/química , Curcumina/química , Composição de Medicamentos , Feminino , Humanos , Permeabilidade
8.
Bioconjug Chem ; 24(6): 1008-16, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23777335

RESUMO

Immunoconjugates, including antibody-drug conjugates and Fc-conjugates, represent a rapidly growing class of therapeutics undergoing clinical development. Despite their growing popularity, the high intrinsic heterogeneity of immunoconjugates often complicates the development process and limits their widespread application. In particular, immunoconjugate charge variants exhibit markedly different colloidal stabilities, solubilities, pharmacokinetics, and tissue distributions. Charge variants arise spontaneously due to degradation and, depending on the type of drug, linker, and conjugation site, through drug conjugation. Electrostatic changes in naked antibodies often result in poor performance characteristics, and therefore, charge alterations due to degradation are critical to control. Charge properties are expected to be equally important to producing well-behaved ADCs. Charge-based methods of analysis, such as isoelectric focusing and ion exchange chromatography, are capable of probing the underlying complexities within immunoconjugate drug products. Despite the utility of these methods, there are only a few published reports of charge-based assays applied to immunoconjugates. In the present study, we sought to identify the effects of chemical conjugation on the electrostatic properties of Fc-conjugates. In order to minimize the effects of post-translational modifications (e.g., deamidation), a single Fc charge variant was isolated prior to conjugation of a fluorescent probe, Alexa Fluor 350, to the side chains of lysine residues. The resulting Fc-conjugates were assessed by a variety of analytical techniques, including isoelectric focusing and ion exchange chromatography, to determine their charge properties.


Assuntos
Acetatos/química , Cromonas/química , Corantes Fluorescentes/química , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/biossíntese , Fragmentos Fc das Imunoglobulinas/isolamento & purificação , Eletricidade Estática
10.
J Control Release ; 167(1): 76-84, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23369761

RESUMO

Intravitreal injection of biodegradable nanoparticles (NP) holds promise for gene therapy and drug delivery to the back of the eye. In some cases, including gene therapy, NP need to diffuse rapidly from the site of injection in order to reach targeted cell types in the back of the eye, whereas in other cases it may be preferred for the particles to remain at the injection site and slowly release drugs that may then diffuse to the site of action. We studied the movements of polystyrene (PS) NP of various sizes and surface chemistries in fresh bovine vitreous. PS NP as large as 510nm rapidly penetrated the vitreous gel when coated with polyethylene glycol (PEG), whereas the movements of NP 1190nm in diameter or larger were highly restricted regardless of surface chemistry owing to steric obstruction. PS NP coated with primary amine groups (NH2) possessed positively charged surfaces at the pH of bovine vitreous (pH=7.2), and were immobilized within the vitreous gel. In comparison, PS NP coated with COOH (possessing negatively charged surfaces) in the size range of 100-200nm and at particle concentrations below 0.0025% (w/v) readily diffused through the vitreous meshwork; at higher concentrations (~0.1% w/v), these nanoparticles aggregated within vitreous. Based on the mobility of different sized PEGylated PS NP (PS-PEG), we estimated the average mesh size of fresh bovine vitreous to be ~550±50nm. The bovine vitreous behaved as an impermeable elastic barrier to objects sized 1190nm and larger, but as a highly permeable viscoelastic liquid to non-adhesive objects smaller than 510nm in diameter. Guided by these studies, we next sought to examine the transport of drug- and DNA-loaded nanoparticles in bovine vitreous. Biodegradable NP with a diameter of 227nm, composed of a poly(lactic-co-glycolic acid) (PLGA)-based core coated with poly(vinyl alcohol) rapidly penetrated vitreous. Rod-shaped, highly-compacted CK30PEG10k/DNA with PEG coating (neutral surface charge; hydrodynamic diameter ~60nm) also diffused rapidly within vitreous. These findings will help guide the development of nanoparticle-based therapeutics for the treatment of vision-threatening ocular diseases.


Assuntos
DNA/química , Nanopartículas/química , Polímeros/química , Corpo Vítreo/química , Animais , Bovinos , Difusão , Módulo de Elasticidade , Reologia , Propriedades de Superfície , Viscosidade
11.
Biomaterials ; 33(7): 2361-71, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22182747

RESUMO

Highly compacted DNA nanoparticles, composed of single molecules of plasmid DNA compacted with block copolymers of polyethylene glycol and poly-L-lysine (PEG-CK(30)), have shown considerable promise in human gene therapy clinical trials in the nares, but may be less capable of transfecting cells that lack surface nucleolin. To address this potential shortcoming, we formulated pH-responsive DNA nanoparticles that mediate gene transfer via a nucleolin-independent pathway. Poly-L-histidine was inserted between PEG and poly-L-lysine to form a triblock copolymer system, PEG-CH(12)K(18). Inclusion of poly-L-histidine increased the buffering capacity of PEG-CH(12)K(18) to levels comparable with branched polyethyleneimine. PEG-CH(12)K(18) compacted DNA into rod-shaped DNA nanoparticles with similar morphology and colloidal stability as PEG-CK(30) DNA nanoparticles. PEG-CH(12)K(18) DNA nanoparticles entered human bronchial epithelial cells (BEAS-2B) that lack surface nucleolin by a clathrin-dependent endocytic mechanism followed by endo-lysosomal processing. Despite trafficking through the degradative endo-lysosomal pathway, PEG-CH(12)K(18) DNA nanoparticles improved the in vitro gene transfer by ~20-fold over PEG-CK(30) DNA nanoparticles, and in vivo gene transfer to lung airways in BALB/c mice by ~3-fold, while maintaining a favorable toxicity profile. These results represent an important step toward the rational development of an efficient gene delivery platform for the lungs based on highly compacted DNA nanoparticles.


Assuntos
DNA/química , Técnicas de Transferência de Genes , Nanopartículas/química , Polietilenoglicóis/química , Polilisina/química , Polímeros/química , Mucosa Respiratória/citologia , Animais , Linhagem Celular , DNA/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Feminino , Terapia Genética/métodos , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Polietilenoglicóis/metabolismo , Polilisina/metabolismo , Polímeros/metabolismo , Mucosa Respiratória/metabolismo
12.
J Control Release ; 157(1): 72-9, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21903145

RESUMO

Highly compacted DNA nanoparticles, composed of single molecules of plasmid DNA compacted with block copolymers of poly-l-lysine and 10kDa polyethylene glycol (CK(30)PEG(10k)), mediate effective gene delivery to the brain, eyes and lungs in vivo. Nevertheless, we found that CK(30)PEG(10k) DNA nanoparticles are immobilized by mucoadhesive interactions in sputum that lines the lung airways of patients with cystic fibrosis (CF), which would presumably preclude the efficient delivery of cargo DNA to the underlying epithelium. We previously found that nanoparticles can rapidly penetrate human mucus secretions if they are densely coated with low MW PEG (2-5kDa), whereas nanoparticles with 10kDa PEG coatings were immobilized. We thus sought to reduce mucoadhesion of DNA nanoparticles by producing CK(30)PEG DNA nanoparticles with low MW PEG coatings. We examined the morphology, colloidal stability, nuclease resistance, diffusion in human sputum and in vivo gene transfer of CK(30)PEG DNA nanoparticles prepared using various PEG MWs. CK(30)PEG(10k) and CK(30)PEG(5k) formulations did not aggregate in saline, provided partial protection against DNase I digestion and exhibited the highest gene transfer to lung airways following inhalation in BALB/c mice. However, all DNA nanoparticle formulations were immobilized in freshly expectorated human CF sputum, likely due to inadequate PEG surface coverage.


Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Nanopartículas/administração & dosagem , Plasmídeos/administração & dosagem , Polietilenoglicóis/administração & dosagem , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peso Molecular , Adulto Jovem
13.
J Control Release ; 158(1): 102-7, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22079809

RESUMO

Highly compacted DNA nanoparticles (DNPs) composed of polyethylene glycol linked to a 30-mer of poly-l-lysine via a single cysteine residue (CK(30)PEG) have previously been shown to provide efficient gene delivery to the brain, eyes and lungs. In this study, we used a combination of flow cytometry, high-resolution live-cell confocal microscopy, and multiple particle tracking (MPT) to investigate the intracellular trafficking of highly compacted CK(30)PEG DNPs made using two different molecular weights of PEG, CK(30)PEG(10k) and CK(30)PEG(5k). We found that PEG MW did not have a major effect on particle morphology nor nanoparticle intracellular transport. CK(30)PEG(10k) and CK(30)PEG(5k) DNPs both entered human bronchial epithelial (BEAS-2B) cells via a caveolae-mediated pathway, bypassing degradative endolysosomal trafficking. Both nanoparticle formulations were found to rapidly accumulate in the perinuclear region of cells within 2h, 37±19% and 47±8% for CK(30)PEG(10k) and CK(30)PEG(5k), respectively. CK(30)PEG(10k) and CK(30)PEG(5k) DNPs moved within live cells at average velocities of 0.09±0.04µm/s and 0.11±0.04µm/s, respectively, in good agreement with reported values for caveolae. These findings show that highly compacted DNPs employ highly regulated trafficking mechanisms similar to biological pathogens to target specific intracellular compartments.


Assuntos
Cisteína/administração & dosagem , DNA/administração & dosagem , Nanopartículas/administração & dosagem , Polietilenoglicóis/administração & dosagem , Transporte Biológico , Linhagem Celular , Cisteína/química , Cisteína/farmacocinética , DNA/química , DNA/farmacocinética , Técnicas de Transferência de Genes , Humanos , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura , Plasmídeos/genética , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética
14.
Mol Ther ; 19(11): 1981-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21829177

RESUMO

For effective airway gene therapy of cystic fibrosis (CF), inhaled gene carriers must first penetrate the hyperviscoelastic sputum covering the epithelium. Whether clinically studied gene carriers can penetrate CF sputum remains unknown. Here, we measured the diffusion of a clinically tested nonviral gene carrier, composed of poly-l-lysine conjugated with a 10 kDa polyethylene glycol segment (CK(30)PEG(10k)). We found that CK(30)PEG(10k)/DNA nanoparticles were trapped in CF sputum. To improve gene carrier diffusion across sputum, we tested adjuvant regimens consisting of N-acetylcysteine (NAC), recombinant human DNase (rhDNase) or NAC together with rhDNase. While rhDNase alone did not enhance gene carrier diffusion, NAC and NAC + rhDNase increased average effective diffusivities by 6-fold and 13-fold, respectively, leading to markedly greater fractions of gene carriers that may penetrate sputum layers. We further tested the adjuvant effects of NAC in the airways of mice with Pseudomonas aeruginosa lipopolysaccharide (LPS)-induced mucus hypersecretion. Intranasal dosing of NAC prior to CK(30)PEG(10k)/DNA nanoparticles enhanced gene expression by up to ~12-fold compared to saline control, reaching levels observed in the lungs of mice without LPS challenge. Our findings suggest that a promising synthetic nanoparticle gene carrier may transfer genes substantially more effectively to lungs of CF patients if administered following adjuvant mucolytic therapy with NAC or NAC + rhDNase.


Assuntos
Acetilcisteína/farmacologia , Fibrose Cística/metabolismo , DNA/metabolismo , Expectorantes/farmacologia , Nanopartículas/química , Escarro/efeitos dos fármacos , Transdução Genética/métodos , Adulto , Animais , Biopolímeros/química , Biopolímeros/genética , Biopolímeros/metabolismo , Fibrose Cística/terapia , DNA/química , Difusão/efeitos dos fármacos , Feminino , Terapia Genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucinas/metabolismo , Plasmídeos/química , Plasmídeos/genética , Plasmídeos/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Polilisina/química , Polilisina/metabolismo , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo , Viscosidade/efeitos dos fármacos , Adulto Jovem
15.
Nanomedicine (Lond) ; 6(2): 365-75, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21385138

RESUMO

AIMS: Sputum poses a critical diffusional barrier that strongly limits the efficacy of drug and gene carriers in the airways of individuals with cystic fibrosis (CF). Previous attempts to enhance particle penetration of CF sputum have focused on either reducing its barrier properties via mucolytics, or decreasing particle adhesion to sputum constituents by coating the particle surface with non-mucoadhesive polymers, including polyethylene glycol (PEG). Neither approach has enabled particles to penetrate expectorated sputum at rates previously observed for non-mucoadhesive nanoparticles in human cervicovaginal mucus. Here, we sought to investigate whether a common mucolytic, N-acetyl cysteine (NAC), in combination with dense PEG coatings on particles, can synergistically enhance particle penetration across fresh undiluted CF sputum. MATERIALS & METHODS: We used high-resolution multiple particle tracking to measure the diffusion of uncoated and PEG-coated nanoparticles in native and NAC-treated CF sputum. RESULTS: We discovered that 200 nm particles, if densely coated with PEG, were able to penetrate CF sputum pretreated with NAC with average speeds approaching their theoretical speeds in water. Based on the rapid penetration of PEG-coated particles in NAC-treated sputum, we determined that the average spacing between sputum mesh elements was increased from 145 ± 50 nm to 230 ± 50 nm upon NAC treatment. Mathematical models based on particle transport rates suggest as much as 75 and 30% of 200 and 500 nm PEG-coated particles, respectively, may penetrate a physiologically thick NAC-treated CF sputum layer within 20 min. Uncoated particles were trapped in CF sputum pretreated with NAC nearly to the same extent as in native sputum, suggesting that NAC treatment alone offered little improvement to particle penetration. CONCLUSION: NAC facilitated rapid diffusion of PEG-coated, muco-inert nanoparticles in CF sputum. Our results provide a promising strategy to improve drug and gene carrier penetration in CF sputum, offering hope for improved therapies for CF.


Assuntos
Acetilcisteína/farmacologia , Transporte Biológico/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Portadores de Fármacos/química , Nanopartículas/química , Escarro/metabolismo , Adulto , Portadores de Fármacos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nanopartículas/ultraestrutura , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Escarro/efeitos dos fármacos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...