Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Meteorit Planet Sci ; 52(1): 174-190, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32661458

RESUMO

To evaluate the feasibility of measuring differences in bulk composition among carbonaceous meteorite parent bodies from an asteroid or comet orbiter, we present the results of a performance simulation of an orbital gamma-ray spectroscopy (GRS) experiment in a Dawn-like orbit around spherical model asteroids with a range of carbonaceous compositions. The orbital altitude was held equal to the asteroid radius for 4.5 months. Both the asteroid gamma-ray spectrum and the spacecraft background flux were calculated using the MCNPX Monte-Carlo code. GRS is sensitive to depths below the optical surface (to ≈20-50 cm depth depending on material density). This technique can therefore measure underlying compositions beneath a sulfur-depleted (e.g., Nittler et al. 2001) or desiccated surface layer. We find that 3σ uncertainties of under 1 wt% are achievable for H, C, O, Si, S, Fe, and Cl for five carbonaceous meteorite compositions using the heritage Mars Odyssey GRS design in a spacecraft-deck-mounted configuration at the Odyssey end-of-mission energy resolution, FWHM = 5.7 keV at 1332 keV. The calculated compositional uncertainties are smaller than the compositional differences between carbonaceous chondrite subclasses.

2.
Science ; 333(6051): 1847-50, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21960623

RESUMO

X-ray fluorescence spectra obtained by the MESSENGER spacecraft orbiting Mercury indicate that the planet's surface differs in composition from those of other terrestrial planets. Relatively high Mg/Si and low Al/Si and Ca/Si ratios rule out a lunarlike feldspar-rich crust. The sulfur abundance is at least 10 times higher than that of the silicate portion of Earth or the Moon, and this observation, together with a low surface Fe abundance, supports the view that Mercury formed from highly reduced precursor materials, perhaps akin to enstatite chondrite meteorites or anhydrous cometary dust particles. Low Fe and Ti abundances do not support the proposal that opaque oxides of these elements contribute substantially to Mercury's low and variable surface reflectance.

3.
Science ; 333(6051): 1850-2, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21960624

RESUMO

The MESSENGER Gamma-Ray Spectrometer measured the average surface abundances of the radioactive elements potassium (K, 1150 ± 220 parts per million), thorium (Th, 220 ± 60 parts per billion), and uranium (U, 90 ± 20 parts per billion) in Mercury's northern hemisphere. The abundance of the moderately volatile element K, relative to Th and U, is inconsistent with physical models for the formation of Mercury requiring extreme heating of the planet or its precursor materials, and supports formation from volatile-containing material comparable to chondritic meteorites. Abundances of K, Th, and U indicate that internal heat production has declined substantially since Mercury's formation, consistent with widespread volcanism shortly after the end of late heavy bombardment 3.8 billion years ago and limited, isolated volcanic activity since.

4.
Science ; 329(5997): 1334-7, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20829484

RESUMO

Carbon dioxide is a primary component of the martian atmosphere and reacts readily with water and silicate rocks. Thus, the stable isotopic composition of CO2 can reveal much about the history of volatiles on the planet. The Mars Phoenix spacecraft measurements of carbon isotopes [referenced to the Vienna Pee Dee belemnite (VPDB)] [delta13C(VPDB) = -2.5 +/- 4.3 per mil (per thousand)] and oxygen isotopes [referenced to the Vienna standard mean ocean water (VSMOW)] (delta18O(VSMOW) = 31.0 +/- 5.7 per thousand), reported here, indicate that CO2 is heavily influenced by modern volcanic degassing and equilibration with liquid water. When combined with data from the martian meteorites, a general model can be constructed that constrains the history of water, volcanism, atmospheric evolution, and weathering on Mars. This suggests that low-temperature water-rock interaction has been dominant throughout martian history, carbonate formation is active and ongoing, and recent volcanic degassing has played a substantial role in the composition of the modern atmosphere.


Assuntos
Dióxido de Carbono/análise , Marte , Atmosfera , Isótopos de Carbono/análise , Carbonatos , Evolução Planetária , Meio Ambiente Extraterreno , Meteoroides , Isótopos de Oxigênio/análise , Astronave , Temperatura , Tempo , Erupções Vulcânicas , Água
5.
Nature ; 457(7225): 26, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19122618
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...