Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Genes ; 59(6): 874-877, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667026

RESUMO

The newly discovered Xanthomonas phage M29 (Xp M29) is the first lytic phage infecting Xanthomonas campestris pv. campestris (Xcc) that was isolated from cabbage leaves in the Czech Republic. The phage consists of icosahedral head approximately 60 nm in diameter and a probably contractile tail of 170 nm. The complete genome size was 42 891 bp, with a G + C content of 59.6%, and 69 ORFs were predicted on both strands. Pairwise nucleotide comparison showed the highest similarity with the recently described Xanthomonas phage FoX3 (91.2%). Bacteriophage Xp M29 has a narrow host range infecting 5 out of 21 isolates of Xcc. Xp M29 is a novel species in a newly formed genus Foxunavirus assigned directly to the class Caudoviricetes.


Assuntos
Bacteriófagos , Xanthomonas campestris , Xanthomonas , República Tcheca , Xanthomonas campestris/genética , Xanthomonas/genética , Bacteriófagos/genética , Myoviridae
2.
PLoS One ; 18(8): e0290108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585477

RESUMO

High-throughput sequencing (HTS) has proven a powerful tool to uncover the virome of cultivated and wild plants and offers the opportunity to study virus movements across the agroecological interface. The carrot model consisting of cultivated (Daucus carota ssp. sativus) and wild carrot (Daucus carota ssp. carota) populations, is particularly interesting with respect to comparisons of virus communities due to the low genetic barrier to virus flow since both population types belong to the same plant species. Using a highly purified double-stranded RNA-based HTS approach, we analyzed on a large scale the virome of 45 carrot populations including cultivated, wild and off-type carrots (carrots growing within the field and likely representing hybrids between cultivated and wild carrots) in France and six additional carrot populations from central Spain. Globally, we identified a very rich virome comprising 45 viruses of which 25 are novel or tentatively novel. Most of the identified novel viruses showed preferential associations with wild carrots, either occurring exclusively in wild populations or infecting only a small proportion of cultivated populations, indicating the role of wild carrots as reservoir of viral diversity. The carrot virome proved particularly rich in viruses involved in complex mutual interdependencies for aphid transmission such as poleroviruses, umbraviruses and associated satellites, which can be the basis for further investigations of synergistic or antagonistic virus-vector-host relationships.


Assuntos
Daucus carota , Daucus carota/genética , Espanha , Viroma/genética , França
3.
Virus Genes ; 59(5): 775-780, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37458918

RESUMO

Stenotrophomonas maltophilia is a Gram-negative bacterium widely distributed in the environment and associated with nosocomial infections, pneumonia, and bacteremia in humans and other mammals. We have isolated and sequenced a new virus that lyses the S. maltophilia strain from a dog skin. The virus has a siphovirus-like morphology and a linear dsDNA genome 60,804 pb in length with terminal repeats, four tRNA genes, and 111 putative proteins. The annotated genes resemble the corresponding genes of some siphoviruses, but the unique genome arrangement and limited similarity of the encoded proteins suggest that this virus does not belong to any known genus. The virus uses zinc metallopeptidase for lysis of its host. This enzyme is active in the presence of Zn2+ or Mg2+ ions and maintains its bactericidal activity up to 50 °C. Both the virus itself and the endolysin specifically degrade only the host bacterial strain.


Assuntos
Stenotrophomonas maltophilia , Humanos , Cães , Animais , Stenotrophomonas maltophilia/genética , Mamíferos
4.
Plants (Basel) ; 12(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37447124

RESUMO

Plants can be infected with multiple viruses. High-throughput sequencing tools have enabled numerous discoveries of multi-strain infections, when more than one viral strain or divergent genomic variant infects a single plant. Here, we investigated small interfering RNAs (siRNAs) in a single strawberry plant co-infected with several strains of strawberry mottle virus (SMoV), strawberry crinkle virus (SCV) and strawberry virus 1 (StrV-1). A range of plants infected with subsets of the initial viral species and strains that were obtained by aphid-mediated transmission were also evaluated. Using high-throughput sequencing, we characterized the small RNA fractions associated with different genotypes of these three viruses and determined small RNA hotspot regions in viral genomes. A comparison of virus-specific siRNA (vsiRNA) abundance with relative viral concentrations did not reveal any consistent agreement. Strawberry mottle virus strains exhibiting considerable variations in concentrations were found to be associated with comparable quantities of vsiRNAs. Additionally, by estimating the specificity of siRNAs to different viral strains, we observed that a substantial pool of vsiRNAs could target all SMoV strains, while strain-specific vsiRNAs predominantly targeted rhabdoviruses, SCV and StrV-1. This highlights the intricate nature and potential interference of the antiviral response within a single infected plant when multiple viruses are present.

5.
Microorganisms ; 11(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36985194

RESUMO

The pectinolytic Dickeya solani bacterium is an important pathogen found in potatoes. We conducted laboratory and field experiments mimicking severe and mild Dickeya spp. infection and investigated the application of a mixture of two lytic bacteriophages before and after bacterial infection to protect the plants. Application of the phage solution to tuber disks and wounded tubers did not completely eliminate the infection but reduced the development of soft rot symptoms by 59.5-91.4%, depending on the phage concentration. In the field trial, plants treated with bacteriophages after severe Dickeya infection had 5-33% greater leaf cover and 4-16% greater tuber yield compared to untreated plants. When simulating a mild infection, leaf cover was 11-42% greater, and tuber yield was 25-31% greater compared to untreated plants. We conclude that the phage mixture has the potential to protect potatoes ecologically from D. solani.

6.
Viruses ; 14(7)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35891344

RESUMO

Advances in high-throughput sequencing methods have boosted the discovery of multistrain viral infections in diverse plant systems. This phenomenon appears to be pervasive for certain viral species. However, our knowledge of the transmission aspects leading to the establishment of such mixed infections is limited. Recently, we reported a mixed infection of a single strawberry plant with strawberry mottle virus (SMoV), strawberry crinkle virus (SCV) and strawberry virus 1 (StrV-1). While SCV and StrV-1 are represented by two and three molecular variants, respectively, SmoV has three different RNA1 and RNA2 segments. In this study, we focus on virus acquisition by individual adult aphids of the Aphis gossypii, Aphis forbesi and Chaetosiphon fragaefolii species. Single-aphid transmission trials are performed under experimental conditions. Both different viruses and individual virus strains show varying performances in single aphid acquisition. The obtained data suggests that numerous individual transmission events lead to the establishment of multistrain infections. These data will be important for the development of epidemiological models in plant virology.


Assuntos
Afídeos , Fragaria , Rhabdoviridae , Secoviridae , Viroses , Animais , Doenças das Plantas , Rhabdoviridae/genética
7.
Viruses ; 13(8)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34452284

RESUMO

Kosakonia cowanii (syn. Enterobacter cowanii) is a highly competitive bacterium that lives with plant, insect, fish, bird, and human organisms. It is pathogenic on some plants and an opportunistic pathogen of human. Nine novel viruses that lyse plant pathogenic strains and/or human strains of K. cowanii were isolated, sequenced, and characterized. Kc166A is a novel kayfunavirus, Kc261 is a novel bonnellvirus, and Kc318 is a new cronosvirus (all Autographiviridae). Kc237 is a new sortsnevirus, but Kc166B and Kc283 are members of new genera within Podoviridae. Kc304 is a new winklervirus, and Kc263 and Kc305 are new myoviruses. The viruses differ in host specificity, plaque phenotype, and lysis kinetics. Some of them should be suitable also as pathogen control agents.


Assuntos
Bacteriólise , Bacteriófagos/fisiologia , Caudovirales/fisiologia , Enterobacteriaceae/virologia , Folhas de Planta/microbiologia , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Caudovirales/classificação , Caudovirales/genética , Caudovirales/isolamento & purificação , Enterobacteriaceae/fisiologia , Genoma Viral , Especificidade de Hospedeiro , Humanos , Myoviridae/classificação , Myoviridae/genética , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Filogenia , Doenças das Plantas/microbiologia , Microbiologia do Solo , Glycine max/microbiologia
8.
Virus Genes ; 57(3): 302-305, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33914264

RESUMO

Two novel dsDNA bacteriophages named Pectobacterium virus CB251 (PcCB251) and Pectobacterium virus CB7V (PcCB7V) targeting plant pathogen Pectobacterium parmentieri have been isolated and sequenced. The PcCB251 genome consists of 40,557 bp with G+C content of 48.6% and contains 47 predicted genes on a single strand. The phage is classified in genus Berlinvirus, family Autographiviridae. The PcCB7V phage has a circular dsDNA genome of 146,054 bp with G+C content of 50.4% and contains 269 predicted protein genes on both strands and 13 tRNA genes. The PcCB7V phage can be classified in genus Certrevirus, subfamily Vequintavirinae. Both novel bacteriophages have narrow host ranges, but they extend the list of candidates for phage-based control of pectolytic bacteria causing soft rot disease of potato.


Assuntos
Bacteriófagos/genética , Vírus de DNA/genética , Genoma Viral/genética , Vírus de Plantas/genética , Pectobacterium/genética , Pectobacterium/patogenicidade , Pectobacterium/virologia , Vírus de Plantas/patogenicidade , Solanum tuberosum/genética , Solanum tuberosum/virologia , Sequenciamento Completo do Genoma
9.
Arch Virol ; 166(4): 1171-1175, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33559747

RESUMO

Seven novel tailed lytic viruses (Ds3CZ, Ds5CZ, Ds9CZ, Ds16CZ, Ds20CZ, Ds23CZ, Ds25CZ) infecting the bacterium Dickeya solani were isolated in the Czech Republic. Genomes of these viruses are dsDNA, 149,364 to 155,285 bp in length, and the genome arrangement is very similar to that of the type virus Dickeya virus LIMEstone 1. All but the Ds25CZ virus should be regarded as strains of a single species. Most of the sequence differences are due to the presence or absence of homing endonuclease (HE) genes, with 23 HEs found in Ds3CZ, Ds5CZ, and Ds20CZ, 22 in Ds9CZ, 19 in Ds16CZ, 18 in Ds25CZ, and 15 in Ds23CZ.


Assuntos
Caudovirales/genética , Caudovirales/isolamento & purificação , Dickeya/virologia , Caudovirales/classificação , República Tcheca , DNA Viral/genética , Endonucleases/genética , Variação Genética , Genoma Viral/genética , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Solanum tuberosum/microbiologia , Solanum tuberosum/virologia , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...