Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Invest Ophthalmol Vis Sci ; 64(5): 15, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37200039

RESUMO

Purpose: To investigate changes in myofiber composition in the global layer (GL) and orbital layer (OL) of extraocular muscles (EOMs) from terminal amyotrophic lateral sclerosis (ALS) donors. Methods: Medial recti muscles collected postmortem from spinal-onset ALS, bulbar-onset ALS, and healthy control donors were processed for immunofluorescence with antibodies against myosin heavy chain (MyHC) IIa, MyHCI, MyHCeom, laminin, neurofilaments, synaptophysin, acetylcholine receptor γ-subunit, and α-bungarotoxin. Results: The proportion of myofibers containing MyHCIIa was significantly smaller and MyHCeom was significantly larger in the GL of spinal-onset ALS and bulbar-onset ALS donors compared to control donors. Changes in the GL were more prominent in the bulbar-onset ALS donors, with a significantly larger proportion of myofibers containing MyHCeom being present compared to spinal-onset ALS donors. There were no significant differences in the myofiber composition in the OL. In the spinal-onset ALS donors, the proportions of myofibers containing MyHCIIa in the GL and MyHCeom in the OL were significantly correlated with the disease duration. Neurofilament and synaptophysin were present at motor endplates of myofibers containing MyHCeom in ALS donors. Conclusions: The EOMs of terminal ALS donors displayed changes in the fast-type myofiber composition in the GL, with a more pronounced alteration in bulbar-onset ALS donors. Our results align with the worse prognosis and subclinical changes in eye movement function previously observed in bulbar-onset ALS patients and suggest that the myofibers in the OL might be more resistant to the pathological process in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Músculos Oculomotores , Humanos , Músculos Oculomotores/patologia , Sinaptofisina , Cadeias Pesadas de Miosina , Isoformas de Proteínas
2.
Acta Neuropathol ; 145(1): 13-28, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36385230

RESUMO

Mutations in the gene encoding the ubiquitously expressed free radical scavenging enzyme superoxide dismutase-1 (SOD1) are found in 2-6% of amyotrophic lateral sclerosis patients. The most frequent SOD1 mutation worldwide is D90A. Amyotrophic lateral sclerosis caused by this mutation has some unusual features: the heredity is usually recessive, the phenotype is stereotypic with slowly evolving motor symptoms beginning in the legs and may also include sensory, autonomic, and urinary bladder involvement. Furthermore, the mutant protein resembles the wild type, with normal content and enzymatic activity in the central nervous system. Here, we report neuropathological findings in nine patients homozygous for the D90A mutation. All nine had numerous small granular inclusions immunoreactive for misfolded SOD1 in motor neurons and glial nuclei in the spinal cord and brainstem. In addition to degeneration of the corticospinal tracts, all patients had degeneration of the dorsal columns. We also found intense gliosis in circumscribed cortical areas of the frontal and temporal lobes and in the insula. In these areas and in adjacent white matter, there were SOD1 staining neuropil threads. A few SOD1-immunopositive cytoplasmic neuronal inclusions were observed in cortical areas, as were glial nuclear inclusions. As suggested by the symptoms and signs and earlier neurophysiological and imaging investigations, the histopathology in patients homozygous for the D90A SOD1 extends beyond the motor system to include cognitive and sensory cortical areas. However, even in the patients that had a symptomatic disease duration of more than 2 or 3 decades and lived into their 70s or 80s, there were no SOD1-inclusion pathology and no typical dysfunction (apart from the musculature) in non-nervous organs. Thus, only specific parts of the CNS seem to be vulnerable to toxicity provoked by homozygously expressed mutant SOD1.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Sistema Nervoso Central/patologia , Neurônios Motores/metabolismo , Mutação/genética , Tratos Piramidais/metabolismo
3.
Eur J Neurol ; 29(4): 1279-1283, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35253968

RESUMO

BACKGROUND AND PURPOSE: With the advent of gene therapies for amyotrophic lateral sclerosis (ALS), the importance of gene testing in ALS is increasing. This will likely lead to the identification of new variants for which the pathogenicity is not established. We aimed to study the pathogenicity of a newly identified variant in superoxide dismutase 1 (SOD1). METHODS: Gene testing was performed using Sanger sequencing. SOD1 activity in erythrocytes was measured using spectrophotometry. Postmortem brain and spinal cord sections were stained with antibodies against phospho-TDP-43 and SOD1. RESULTS: We identified a novel c.416G>T (p.Gly139Val) mutation in SOD1, which caused a rapidly progressive respiratory onset form of ALS. The mutation resulted in a 50% drop of SOD1 activity. Postmortem examination confirmed the absence of TDP-43 pathology and displayed typical SOD1 inclusions in remaining motor neurons, confirming the pathogenic nature of the mutation. CONCLUSIONS: Novel variants of unknown pathogenicity will be identified as a result of a surge in gene testing in people with ALS. An in-depth study of a newly identified p.Gly139Val mutation in SOD1 confirmed the pathogenicity of this mutation. Future patients with this particular mutation should qualify for SOD1 silencing or editing therapies.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Feminino , Humanos , Mutação/genética , Gravidez , Gestantes , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética
4.
Neuro Oncol ; 24(9): 1454-1468, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35157758

RESUMO

BACKGROUND: Gliomas are complex tumors with several genetic aberrations and diverse metabolic programs contributing to their aggressive phenotypes and poor prognoses. This study defines key metabolic features that can be used to differentiate between glioma subtypes, with potential for improved diagnostics and subtype targeted therapy. METHODS: Cross-platform global metabolomic profiling coupled with clinical, genetic, and pathological analysis of glioma tissue from 224 tumors-oligodendroglioma (n = 31), astrocytoma (n = 31) and glioblastoma (n = 162)-were performed. Identified metabolic phenotypes were evaluated in accordance with the WHO classification, IDH-mutation, 1p/19q-codeletion, WHO-grading 2-4, and MGMT promoter methylation. RESULTS: Distinct metabolic phenotypes separate all six analyzed glioma subtypes. IDH-mutated subtypes, expressing 2-hydroxyglutaric acid, were clearly distinguished from IDH-wildtype subtypes. Considerable metabolic heterogeneity outside of the mutated IDH pathway were also evident, with key metabolites being high expression of glycerophosphates, inositols, monosaccharides, and sugar alcohols and low levels of sphingosine and lysoglycerophospholipids in IDH-mutants. Among the IDH-mutated subtypes, we observed high levels of amino acids, especially glycine and 2-aminoadipic acid, in grade 4 glioma, and N-acetyl aspartic acid in low-grade astrocytoma and oligodendroglioma. Both IDH-wildtype and mutated oligodendroglioma and glioblastoma were characterized by high levels of acylcarnitines, likely driven by rapid cell growth and hypoxic features. We found elevated levels of 5-HIAA in gliosarcoma and a subtype of oligodendroglioma not yet defined as a specific entity, indicating a previously not described role for the serotonin pathway linked to glioma with bimorphic tissue. CONCLUSION: Key metabolic differences exist across adult glioma subtypes.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Oligodendroglioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Organização Mundial da Saúde
5.
Acta Neuropathol Commun ; 9(1): 111, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158126

RESUMO

The deposition of aggregated proteins is a common neuropathological denominator for neurodegenerative disorders. Experimental evidence suggests that disease propagation involves prion-like mechanisms that cause the spreading of template-directed aggregation of specific disease-associated proteins. In transgenic (Tg) mouse models of superoxide dismutase-1 (SOD1)-linked amyotrophic lateral sclerosis (ALS), inoculation of minute amounts of human SOD1 (hSOD1) aggregates into the spinal cord or peripheral nerves induces premature ALS-like disease and template-directed hSOD1 aggregation that spreads along the neuroaxis. This infectious nature of spreading pathogenic aggregates might have implications for the safety of laboratory and medical staff, recipients of donated blood or tissue, or possibly close relatives and caregivers. Here we investigate whether transmission of ALS-like disease is unique to the spinal cord and peripheral nerve inoculations or if hSOD1 aggregation might spread from the periphery into the central nervous system (CNS). We inoculated hSOD1 aggregate seeds into the peritoneal cavity, hindlimb skeletal muscle or spinal cord of adult Tg mice expressing mutant hSOD1. Although we used up to 8000 times higher dose-compared to the lowest dose transmitting disease in spinal cord inoculations-the peripheral inoculations did not transmit seeded aggregation to the CNS or premature ALS-like disease in hSOD1 Tg mice. Nor was any hSOD1 aggregation detected in the liver, kidney, skeletal muscle or sciatic nerve. To explore potential reasons for the lack of disease transmission, we examined the stability of hSOD1 aggregates and found them to be highly vulnerable to both proteases and detergent. Our findings suggest that exposed individuals and personnel handling samples from ALS patients are at low risk of any potential transmission of seeded hSOD1 aggregation.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Agregação Patológica de Proteínas/patologia , Superóxido Dismutase-1 , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
6.
Acta Neuropathol Commun ; 8(1): 161, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928301

RESUMO

Increasing evidence suggests that propagation of the motor neuron disease amyotrophic lateral sclerosis (ALS) involves the pathogenic aggregation of disease-associated proteins that spread in a prion-like manner. We have identified two aggregate strains of human superoxide dismutase 1 (hSOD1) that arise in the CNS of transgenic mouse models of SOD1-mediated ALS. Both strains transmit template-directed aggregation and premature fatal paralysis when inoculated into the spinal cord of adult hSOD1 transgenic mice. This spread of pathogenic aggregation could be a potential target for immunotherapeutic intervention. Here we generated mouse monoclonal antibodies (mAbs) directed to exposed epitopes in hSOD1 aggregate strains and identified an aggregate selective mAb that targets the aa 143-153 C-terminal extremity of hSOD1 (αSOD1143-153). Both pre-incubation of seeds with αSOD1143-153 prior to inoculation, and weekly intraperitoneal (i.p.) administration attenuated transmission of pathogenic aggregation and prolonged the survival of seed-inoculated hSOD1G85R Tg mice. In contrast, administration of a mAb targeting aa 65-72 (αSOD165-72), which exhibits high affinity towards monomeric disordered hSOD1, had an adverse effect and aggravated seed induced premature ALS-like disease. Although the mAbs reached similar concentrations in CSF, only αSOD1143-153 was found in association with aggregated hSOD1 in spinal cord homogenates. Our results suggest that an aggregate-selective immunotherapeutic approach may suppress seeded transmission of pathogenic aggregation in ALS. However, long-term administration of αSOD1143-153 was unable to prolong the lifespan of non-inoculated hSOD1G85R Tg mice. Thus, spontaneously initiated hSOD1 aggregation in spinal motor neurons may be poorly accessible to therapeutic antibodies.


Assuntos
Esclerose Lateral Amiotrófica , Anticorpos Monoclonais/farmacologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Superóxido Dismutase-1/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Camundongos Transgênicos
7.
Cancers (Basel) ; 11(12)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842352

RESUMO

Genome-wide association studies have identified 25 germline genetic loci that increase the risk of glioma. The somatic tumor molecular alterations, including IDH-mutation status and 1p/19q co-deletion, have been included into the WHO 2016 classification system for glioma. To investigate how the germline genetic risk variants correlate with the somatic molecular subtypes put forward by WHO, we performed a meta-analysis that combined findings from 330 Swedish cases and 876 controls with two other recent studies. In total, 5,103 cases and 10,915 controls were included. Three categories of associations were found. First, variants in TERT and TP53 were associated with increased risk of all glioma subtypes. Second, variants in CDKN2B-AS1, EGFR, and RTEL1 were associated with IDH-wildtype glioma. Third, variants in CCDC26 (the 8q24 locus), C2orf80 (close to IDH), LRIG1, PHLDB1, ETFA, MAML2 and ZBTB16 were associated with IDH-mutant glioma. We therefore propose three etiopathological pathways in gliomagenesis based on germline variants for future guidance of diagnosis and potential functional targets for therapies. Future prospective clinical trials of patients with suspicion of glioma diagnoses, using the genetic variants as biomarkers, are necessary to disentangle how strongly they can predict glioma diagnosis.

8.
J Neurol Neurosurg Psychiatry ; 90(8): 861-869, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30992335

RESUMO

OBJECTIVE: A hallmark of amyotrophic lateral sclerosis (ALS) caused by mutations in superoxide dismutase-1 (SOD1) are inclusions containing SOD1 in motor neurons. Here, we searched for SOD1-positive inclusions in 29 patients carrying ALS-linked mutations in six other genes. METHODS: A panel of antibodies that specifically recognise misfolded SOD1 species were used for immunohistochemical investigations of autopsy tissue. RESULTS: The 18 patients with hexanucleotide-repeat-expansions in C9orf72 had inclusions of misfolded wild type (WT) SOD1WT in spinal motor neurons. Similar inclusions were occasionally observed in medulla oblongata and in the motor cortex and frontal lobe. Patients with mutations in FUS, KIF5A, NEK1, ALSIN or VAPB, carried similar SOD1WT inclusions. Minute amounts of misSOD1WT inclusions were detected in 2 of 20 patients deceased from non-neurological causes and in 4 of 10 patients with other neurodegenerative diseases. Comparison was made with 17 patients with 9 different SOD1 mutations. Morphologically, the inclusions in patients with mutations in C9orf72HRE, FUS, KIF5A, NEK1, VAPB and ALSIN resembled inclusions in patients carrying the wildtype-like SOD1D90A mutation, whereas patients carrying unstable SOD1 mutations (A4V, V5M, D76Y, D83G, D101G, G114A, G127X, L144F) had larger skein-like SOD1-positive inclusions. CONCLUSIONS AND RELEVANCE: Abundant inclusions containing misfolded SOD1WT are found in spinal and cortical motor neurons in patients carrying mutations in six ALS-causing genes other than SOD1. This suggests that misfolding of SOD1WT can be part of a common downstream event that may be pathogenic. The new anti-SOD1 therapeutics in development may have applications for a broader range of patients.


Assuntos
Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Mutação/genética , Deficiências na Proteostase/genética , Superóxido Dismutase-1/genética , Adulto , Idoso , Esclerose Lateral Amiotrófica/patologia , Feminino , Demência Frontotemporal/patologia , Genes/genética , Humanos , Corpos de Inclusão/metabolismo , Masculino , Bulbo/metabolismo , Bulbo/patologia , Pessoa de Meia-Idade , Córtex Motor/metabolismo , Córtex Motor/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia
9.
Acta Neuropathol ; 138(1): 85-101, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30863976

RESUMO

Mutations in superoxide dismutase 1 (SOD1) cause amyotrophic lateral sclerosis (ALS). Disease pathogenesis is linked to destabilization, disorder and aggregation of the SOD1 protein. However, the non-genetic factors that promote disorder and the subsequent aggregation of SOD1 have not been studied. Mainly located to the reducing cytosol, mature SOD1 contains an oxidized disulfide bond that is important for its stability. Since O2 is required for formation of the bond, we reasoned that low O2 tension might be a risk factor for the pathological changes associated with ALS development. By combining biochemical approaches in an extensive range of genetically distinct patient-derived cell lines, we show that the disulfide bond is an Achilles heel of the SOD1 protein. Culture of patient-derived fibroblasts, astrocytes, and induced pluripotent stem cell-derived mixed motor neuron and astrocyte cultures (MNACs) under low O2 tensions caused reductive bond cleavage and increases in disordered SOD1. The effects were greatest in cells derived from patients carrying ALS-linked mutations in SOD1. However, significant increases also occurred in wild-type SOD1 in cultures derived from non-disease controls, and patients carrying mutations in other common ALS-linked genes. Compared to fibroblasts, MNACs showed far greater increases in SOD1 disorder and even aggregation of mutant SOD1s, in line with the vulnerability of the motor system to SOD1-mediated neurotoxicity. Our results show for the first time that O2 tension is a principal determinant of SOD1 stability in human patient-derived cells. Furthermore, we provide a mechanism by which non-genetic risk factors for ALS, such as aging and other conditions causing reduced vascular perfusion, could promote disease initiation and progression.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Fibroblastos/patologia , Neurônios Motores/patologia , Oxigênio/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Fibroblastos/metabolismo , Humanos , Mutação/genética , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
10.
Acta Neuropathol ; 136(6): 939-953, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30284034

RESUMO

Motor neurons containing aggregates of superoxide dismutase 1 (SOD1) are hallmarks of amyotrophic lateral sclerosis (ALS) caused by mutations in the gene encoding SOD1. We have previously reported that two strains of mutant human (h) SOD1 aggregates (denoted A and B) can arise in hSOD1-transgenic models for ALS and that inoculation of such aggregates into the lumbar spinal cord of mice results in rostrally spreading, templated hSOD1 aggregation and premature fatal ALS-like disease. Here, we explored whether mutant hSOD1 aggregates with prion-like properties also exist in human ALS. Aggregate seeds were prepared from spinal cords from an ALS patient carrying the hSOD1G127Gfs*7 truncation mutation and from mice transgenic for the same mutation. To separate from mono-, di- or any oligomeric hSOD1 species, the seed preparation protocol included ultracentrifugation through a density cushion. The core structure of hSOD1G127Gfs*7 aggregates present in mice was strain A-like. Inoculation of the patient- or mouse-derived seeds into lumbar spinal cord of adult hSOD1-expressing mice induced strain A aggregation propagating along the neuraxis and premature fatal ALS-like disease (p < 0.0001). Inoculation of human or murine control seeds had no effect. The potencies of the ALS patient-derived seed preparations were high and disease was initiated in the transgenic mice by levels of hSOD1G127Gfs*7 aggregates much lower than those found in the motor system of patients carrying the mutation. The results suggest that prion-like growth and spread of hSOD1 aggregation could be the primary pathogenic mechanism, not only in hSOD1 transgenic rodent models, but also in human ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Mutação/genética , Agregados Proteicos/fisiologia , Medula Espinal/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Idoso , Animais , Mapeamento de Epitopos , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Medula Espinal/patologia , Superóxido Dismutase/química
11.
Sci Rep ; 8(1): 14223, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242181

RESUMO

Aggregation of mutant superoxide dismutase 1 (SOD1) is a pathological hallmark of a subset of familial ALS patients. However, the possible role of misfolded wild type SOD1 in human ALS is highly debated. To ascertain whether or not misfolded SOD1 is a common pathological feature in non-SOD1 ALS, we performed a blinded histological and biochemical analysis of post mortem brain and spinal cord tissues from 19 sporadic ALS, compared with a SOD1 A4V patient as well as Alzheimer's disease (AD) and non-neurological controls. Multiple conformation- or misfolded-specific antibodies for human SOD1 were compared. These were generated independently by different research groups and were compared using standardized conditions. Five different misSOD1 staining patterns were found consistently in tissue sections from SALS cases and the SOD1 A4V patient, but were essentially absent in AD and non-neurological controls. We have established clear experimental protocols and provide specific guidelines for working, with conformational/misfolded SOD1-specific antibodies. Adherence to these guidelines will aid in the comparison of the results of future studies and better interpretation of staining patterns. This blinded, standardized and unbiased approach provides further support for a possible pathological role of misSOD1 in SALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/metabolismo , Idoso , Animais , Anticorpos/metabolismo , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Dobramento de Proteína , Medula Espinal/metabolismo
12.
Invest Ophthalmol Vis Sci ; 58(9): 3708-3715, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28738414

RESUMO

Purpose: To analyze the proportion and cross-sectional area of myofibers containing myosin heavy chain slow-twitch (MyHCI) and myosin heavy chain slow tonic (MyHCsto) in extraocular muscles of autopsied amyotrophic lateral sclerosis (ALS) patients with either spinal or bulbar site of disease onset. Methods: Whole-muscle cross sections from the middle portion of the medial rectus were labeled with antibodies against MyHCI or MyHCsto and laminin. Myofibers labeled with the MyHC antibodies (MyHCI+sto) and the total number of myofibers were quantified in the orbital and global layer of 6 control individuals and 18 ALS patients. The cross-sectional area of myofibers labeled for either MyHC was quantified in 130 to 472 fibers/individual in the orbital and in 180 to 573 fibers/individual in the global layer of each specimen. Results: The proportion of MyHCI+sto myofibers was significantly smaller in the orbital and global layer of ALS compared to control individuals. MyHCI+sto myofibers were significantly smaller in the global layer than in the orbital layer of ALS, whereas they were of similar size in control subjects. The decreased proportion of MyHCI+sto fibers correlated significantly with the age of death, but not disease duration, in patients who had the bulbar-onset variant of ALS but not in patients with spinal variant. Conclusions: ALS, regardless of site of onset, involves a loss of myofibers containing MyHCI+sto. Only in bulbar-onset cases did aging seem to play a role in the pathophysiological processes underlying the loss of MyHCI+sto fibers.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Fibras Musculares de Contração Lenta/patologia , Miofibrilas/patologia , Cadeias Pesadas de Miosina/metabolismo , Músculos Oculomotores/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Miosinas Cardíacas/metabolismo , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Masculino , Pessoa de Meia-Idade , Miofibrilas/metabolismo , Músculos Oculomotores/metabolismo , Isoformas de Proteínas/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-27936955

RESUMO

A large GGGGCC-repeat expansion mutation (HREM) in C9orf72 is the most common known cause of ALS and FTD in European populations. Sequence variations immediately downstream of the HREM region have previously been observed and have been suggested to be one reason for difficulties in interpreting RP-PCR data. Our objective was to determine the properties of these sequence variations with regard to prevalence, the range of variation, and effect on disease prognosis. We screened a multi-national cohort (n = 6981) for the HREM and samples with deviant RP-PCR curves were identified. The deviant samples were subsequently sequenced to determine sequence alteration. Our results show that in the USA and European cohorts (n = 6508) 10.7% carried the HREM and 3% had a sequence variant, while no HREM or sequence variants were observed in the Japanese cohort (n = 473). Sequence variations were more common on HREM alleles; however, certain population specific variants were associated with a non-expanded allele.In conclusion, we identified 38 different sequence variants, most located within the first 50 bp downstream of the HREM region. Furthermore, the presence of an HREM was found to be coupled to a lower age of onset and a shorter disease survival, while sequence variation did not have any correlation with these parameters.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/epidemiologia , Sequência de Bases , Estudos de Coortes , Expansão das Repetições de DNA , Feminino , Demência Frontotemporal/genética , Frequência do Gene , Predisposição Genética para Doença , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Análise de Sobrevida , Adulto Jovem
14.
J Neurooncol ; 131(1): 83-92, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664151

RESUMO

The knowledge of response to radiation in the immuno-microenvironment of high grade gliomas is sparse. In vitro results have indicated an inflammatory response of myeloid cells after irradiation. Therefore, microdialysis was used to verify whether this is operative in tumor tissue and brain adjacent to tumor (BAT) after clinical radiotherapy of patients with high grade glioma. Stereotactic biopsies and implantation of microdialysis catheters in tumor tissue and BAT were performed in eleven patients with high-grade glioma. The patients were given daily radiation fractions of 2-3.4 Gy. Microdialysis samples were collected before radiotherapy and during the first five days of radiation. Cytokines, glucose metabolites, glutamate and glycerol were analyzed. Immunohistochemistry was performed to detect macrophages (CD68) and monocytes (CD163) as well as IL-6, IL-8 and MCP-1. A significant increase of IL-8, MCP-1 and MIP-1a were detected in tumor tissue already after the first dose of radiation and increased further during 5 days of radiation. IL-6 did also increase but after five fractions of radiation. In BAT, the cytokine response was modest with significant increase of IL-8 after third dose of radiation. We found a positive correlation between baseline IL-8 and IL-6 microdialysis levels in tumor tissue and survival. Glucose metabolites or glycerol and glutamate did not change during radiation. In all tumors staining for macrophages was demonstrated. IL-6 was found in viable tumor cells while MCP-1 was demonstrated in macrophages or tumor matrix. Our findings suggest that radiation induces a rapid enhancement of the prevailing inflammation in high-grade glioma tissue. The microdialysis technique is feasible for this type of study and could be used to monitor metabolic changes after different interventions.


Assuntos
Neoplasias Encefálicas/radioterapia , Citocinas/metabolismo , Glioma/radioterapia , Inflamação/etiologia , Radioterapia/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Feminino , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glicerol , Humanos , Masculino , Microdiálise , Pessoa de Meia-Idade , Estatísticas não Paramétricas
15.
Invest Ophthalmol Vis Sci ; 57(15): 6831-6842, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28002846

RESUMO

Purpose: To investigate the impact of amyotrophic lateral sclerosis (ALS) on the extraocular muscles (EOMs) by examining the distribution of neurotrophic factors (NTFs) and their receptors in EOMs and limb muscles from ALS transgenic mice. Methods: Muscle samples collected from transgenic mice overexpressing human superoxide dismutase type 1 mutations (SOD1G93A, the most widely used mouse model of ALS) at 50 and 150 days as well as age-matched controls were analyzed with immunohistochemistry using antibodies against brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4), glial cell line-derived neurotrophic factor (GDNF), and the neurotrophin receptors p75NTR, tyrosine kinase (Trk) receptor TrkB and TrkC, and GDNF family receptor alpha-1 (GFRα-1). Results: There was an intrinsic difference in NTF expression between EOMs and limb muscles in control mice: EOMs presented significantly lower number of neuromuscular junctions (NMJs) labeled for BDNF and NT-4 at 50 days, and for BDNF and GDNF at 150 days, compared with the control limb muscles of corresponding age. In ALS transgenic mice at 150 days, NTF expression in limb muscles was significantly changed but not in EOMs: the limb muscles presented a significant decline in the number of NMJs labeled for BDNF, NT-4, GDNF, p75NTR, TrkB, and TrkC, which was not observed in EOMs. Conclusions: The significant differences in expression of NTFs on NMJs between EOMs and limb muscles in both control and ALS transgenic mice suggest that NTF may be involved in the pathogenesis of ALS and the resistance of EOMs to the disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Músculo Esquelético/metabolismo , Fatores de Crescimento Neural/metabolismo , Músculos Oculomotores/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Músculo Esquelético/patologia , Junção Neuromuscular/metabolismo , Músculos Oculomotores/patologia
16.
PLoS One ; 11(10): e0163067, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27780202

RESUMO

Genome-wide association studies and candidate gene studies have identified several genetic variants that increase glioma risk. The majority of these variants are non-coding and the mechanisms behind the increased risk in carriers are not known. In this study, we hypothesize that some of the established glioma risk variants induce aberrant DNA methylation in the developing tumor, either locally (gene-specific) or globally (genome-wide). In a pilot data set including 77 glioma patients, we used Illumina beadchip technology to analyze genetic variants in blood and DNA methylation in matched tumor samples. To validate our findings, we used data from the Cancer Genome Atlas, including 401 glioblastoma patients. Consensus clustering identified the glioma CpG island methylator phenotype (gCIMP) and two additional subgroups with distinct patterns of global DNA methylation. In the pilot dataset, gCIMP was associated with two genetic variants in CDKN2B-AS1, rs1412829 and rs4977756 (9p21.3, p = 8.1 x 10-7 and 4.8 x 10-5, respectively). The association was in the same direction in the TCGA dataset, although statistically significant only when combining individuals with AG and GG genotypes. We also investigated the relation between glioma risk variants and DNA methylation in the promoter region of genes located within 30 kb of each variant. One association in the pilot dataset, between the TERT risk variant rs2736100 and lower methylation of cg23827991 (in TERT; p = 0.001), was confirmed in the TCGA dataset (p = 0.001). In conclusion, we found an association between rs1412829 and rs4977756 (9p21.3, CDKN2B-AS1) and global DNA methylation pattern in glioma, for which a trend was seen also in the TCGA glioblastoma dataset. We also found an association between rs2736100 (in TERT) and levels of methylation at cg23827991 (localized in the same gene, 3.3 kbp downstream of the risk variant), which was validated in the TCGA dataset. Except for this one association, we did not find strong evidence for gene-specific DNA methylation mediated by glioma risk variants.


Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA , Glioma/genética , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , Telomerase/genética , Ilhas de CpG , Bases de Dados Genéticas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Glioblastoma/genética , Humanos , Oligodendroglioma/genética , Projetos Piloto , Regiões Promotoras Genéticas
17.
J Clin Invest ; 126(6): 2249-53, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27140399

RESUMO

Amyotrophic lateral sclerosis (ALS) is an adult-onset degeneration of motor neurons that is commonly caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Both patients and Tg mice expressing mutant human SOD1 (hSOD1) develop aggregates of unknown importance. In Tg mice, 2 different strains of hSOD1 aggregates (denoted A and B) can arise; however, the role of these aggregates in disease pathogenesis has not been fully characterized. Here, minute amounts of strain A and B hSOD1 aggregate seeds that were prepared by centrifugation through a density cushion were inoculated into lumbar spinal cords of 100-day-old mice carrying a human SOD1 Tg. Mice seeded with A or B aggregates developed premature signs of ALS and became terminally ill after approximately 100 days, which is 200 days earlier than for mice that had not been inoculated or were given a control preparation. Concomitantly, exponentially growing strain A and B hSOD1 aggregations propagated rostrally throughout the spinal cord and brainstem. The phenotypes provoked by the A and B strains differed regarding progression rates, distribution, end-stage aggregate levels, and histopathology. Together, our data indicate that the aggregate strains are prions that transmit a templated, spreading aggregation of hSOD1, resulting in a fatal ALS-like disease.


Assuntos
Esclerose Lateral Amiotrófica/etiologia , Proteínas Mutantes/genética , Príons/genética , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Proteínas Mutantes/química , Príons/química , Agregados Proteicos/genética , Agregação Patológica de Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/química
18.
J Neurooncol ; 127(3): 483-92, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26839018

RESUMO

During the last years, genome wide association studies have discovered common germline genetic variants associated with specific glioma subtypes. We aimed to study the association between these germline risk variants and tumor phenotypes, including copy number aberrations and protein expression. A total of 91 glioma patients were included. Thirteen well known genetic risk variants in TERT, EGFR, CCDC26, CDKN2A, CDKN2B, PHLDB1, TP53, and RTEL1 were selected for investigation of possible correlations with the glioma somatic markers: EGFR amplification, 1p/19q codeletion and protein expression of p53, Ki-67, and mutated IDH1. The CDKN2A/B risk variant, rs4977756, and the CDKN2B risk variant, rs1412829 were inversely associated (p = 0.049 and p = 0.002, respectively) with absence of a mutated IDH1, i.e., the majority of patients homozygous for the risk allele showed no or low expression of mutated IDH1. The RTEL1 risk variant, rs6010620 was associated (p = 0.013) with not having 1p/19q codeletion, i.e., the majority of patients homozygous for the risk allele did not show 1p/19q codeletion. In addition, the EGFR risk variant rs17172430 and the CDKN2B risk variant rs1412829, both showed a trend for association (p = 0.055 and p = 0.051, respectively) with increased EGFR copy number, i.e., the majority of patients homozygote for the risk alleles showed chromosomal gain or amplification of EGFR. Our findings indicate that CDKN2A/B risk genotypes are associated with primary glioblastoma without IDH mutation, and that there is an inverse association between RTEL1 risk genotypes and 1p/19q codeletion, suggesting that these genetic variants have a molecular impact on the genesis of high graded brain tumors. Further experimental studies are needed to delineate the functional mechanism of the association between genotype and somatic genetic aberrations.


Assuntos
Biomarcadores Tumorais/genética , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , DNA Helicases/genética , Receptores ErbB/genética , Glioma/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Feminino , Seguimentos , Predisposição Genética para Doença , Glioma/patologia , Humanos , Técnicas Imunoenzimáticas , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Mutação/genética , Gradação de Tumores , Prognóstico , Fatores de Risco , Taxa de Sobrevida , Adulto Jovem
19.
Acta Neuropathol Commun ; 4: 6, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26810478

RESUMO

INTRODUCTION: The motor system is selectively vulnerable to mutations in the ubiquitously expressed aggregation-prone enzyme superoxide dismutase-1 (SOD1). RESULTS: Autophagy clears aggregates, and factors involved in the process were analyzed in multiple areas of the CNS from human control subjects (n = 10) and amyotrophic lateral sclerosis (ALS) patients (n = 18) with or without SOD1 mutations. In control subjects, the key regulatory protein Beclin 1 and downstream factors were remarkably scarce in spinal motor areas. In ALS patients, there was evidence of moderate autophagy activation and also dysregulation. These changes were largest in SOD1 mutation carriers. To explore consequences of low autophagy capacity, effects of a heterozygous deletion of Beclin 1 were examined in ALS mouse models expressing mutant SOD1s. This caused earlier SOD1 aggregation, onset of symptoms, motor neuron loss, and a markedly shortened survival. In contrast, the levels of soluble misfolded SOD1 species were reduced. CONCLUSIONS: The findings suggest that an inherent low autophagy capacity might cause the vulnerability of the motor system, and that SOD1 aggregation plays a crucial role in the pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Autofagia/genética , Mutação/genética , Medula Espinal/patologia , Superóxido Dismutase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Proteína Beclina-1 , Proteína C9orf72 , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregação Patológica de Proteínas/genética , Proteínas/genética , Medula Espinal/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo
20.
Am J Epidemiol ; 183(2): 85-91, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26656478

RESUMO

Decades of research have established only a few etiological factors for glioma, which is a rare and highly fatal brain cancer. Common methodological challenges among glioma studies include small sample sizes, heterogeneity of tumor subtypes, and retrospective exposure assessment. Here, we briefly describe the Glioma International Case-Control (GICC) Study (recruitment, 2010-2013), a study being conducted by the Genetic Epidemiology of Glioma International Consortium that integrates data from multiple data collection sites, uses a common protocol and questionnaire, and includes biospecimen collection. To our knowledge, the GICC Study is the largest glioma study to date that includes collection of blood samples, which will allow for genetic analysis and interrogation of gene-environment interactions.


Assuntos
Glioma/genética , Cooperação Internacional , Epidemiologia Molecular/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença , Glioma/sangue , Glioma/epidemiologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...