Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Cancers (Basel) ; 14(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497446

RESUMO

Monoplanar microbeam irradiation (MBI) and pencilbeam irradiation (PBI) are two new concepts of high dose rate radiotherapy, combined with spatial dose fractionation at the micrometre range. In a small animal model, we have explored the concept of integrating MBI or PBI as a simultaneously integrated boost (SIB), either at the beginning or at the end of a conventional, low-dose rate schedule of 5x4 Gy broad beam (BB) whole brain radiotherapy (WBRT). MBI was administered as array of 50 µm wide, quasi-parallel microbeams. For PBI, the target was covered with an array of 50 µm × 50 µm pencilbeams. In both techniques, the centre-to-centre distance was 400 µm. To assure that the entire brain received a dose of at least 4 Gy in all irradiated animals, the peak doses were calculated based on the daily BB fraction to approximate the valley dose. The results of our study have shown that the sequence of the BB irradiation fractions and the microbeam SIB is important to limit the risk of acute adverse effects, including epileptic seizures and death. The microbeam SIB should be integrated early rather than late in the irradiation schedule.

2.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955454

RESUMO

Microbeam radiotherapy (MRT), an experimental high-dose rate concept with spatial fractionation at the micrometre range, has shown a high therapeutic potential as well as good preservation of normal tissue function in pre-clinical studies. We investigated the suitability of MRT as a simultaneously integrated boost (SIB) in conventional whole-brain irradiation (WBRT). A 174 Gy MRT SIB was administered with an array of quasi-parallel, 50 µm wide microbeams spaced at a centre-to-centre distance of 400 µm either on the first or last day of a 5 × 4 Gy radiotherapy schedule in healthy adult C57 BL/6J mice and in F98 glioma cell cultures. The animals were observed for signs of intracranial pressure and focal neurologic signs. Colony counts were conducted in F98 glioma cell cultures. No signs of acute adverse effects were observed in any of the irradiated animals within 3 days after the last irradiation fraction. The tumoricidal effect on F98 cell in vitro was higher when the MRT boost was delivered on the first day of the irradiation course, as opposed to the last day. Therefore, the MRT SIB should be integrated into a clinical radiotherapy schedule as early as possible.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Encéfalo/efeitos da radiação , Neoplasias Encefálicas/radioterapia , Fracionamento da Dose de Radiação , Glioma/radioterapia , Camundongos , Doses de Radiação , Síncrotrons
3.
Int J Radiat Oncol Biol Phys ; 113(5): 967-973, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483539

RESUMO

PURPOSE: The high potential of microbeam radiation therapy (MRT) in improving tumor control while reducing side effects has been shown by numerous preclinical studies. MRT offers a widened therapeutic window by using the periodical spatial fractionation of synchrotron generated x-rays into an array of intense parallel microbeams. MRT now enters a clinical transfer phase. As proof of principle and cornerstone for the safe clinical transfer of MRT, we conducted a "first in dog" trial under clinical conditions. In this report, we evaluated whether a 3-dimensional conformal MRT can be safely delivered as exclusive radiosurgical treatment in animal patients METHODS AND MATERIALS: We irradiated a 17.5-kg French bulldog for a spontaneous brain tumor (glioma suspected on magnetic resonance imaging) with conformal high-dose-rate microbeam arrays (50-µm-wide microbeams, replicated with a pitch of 400 µm) of synchrotron-generated x-rays. The dose prescription adjusted a minimal cumulated valley dose of 2.8 Gy to the plnning target volume (PTV) (cinical target volume (CTV)+ 1 mm). Thus, each beam delivered 20 to 25 Gy to the target as peak doses, and ∼1 Gy as valley doses RESULTS: The treatment was successfully delivered. Clinical follow-up over 3 months showed a significant improvement of the dog's quality of life: the symptoms disappeared. Magnetic resonance imaging, performed 3 months after irradiation, revealed reduction in tumor size (-87.4%) and mass effect with normalization of the left lateral ventricle. CONCLUSIONS: To our knowledge, this neuro-oncologic veterinary trial is the first 3-dimensional conformal synchrotron x-ray MRT treatment of a spontaneous intracranial tumor in a large animal. It is an essential last step toward the clinical transfer of MRT in the near future to demonstrate the feasibility and safety of treating deep-seated tumors using synchrotron-generated microbeams.


Assuntos
Neoplasias Encefálicas , Glioma , Radiocirurgia , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/veterinária , Cães , Glioma/diagnóstico por imagem , Glioma/patologia , Glioma/radioterapia , Qualidade de Vida , Radiocirurgia/métodos , Síncrotrons
4.
Brain ; 145(6): 1978-1991, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35141747

RESUMO

Absence epilepsy belongs to genetic epilepsies and is characterized by recurrent generalized seizures that are concomitant with alterations of consciousness and associated with cognitive comorbidities. Little is known about the mechanisms leading to occurrence of epileptic seizures (i.e. epileptogenesis) and, in particular, it remains an open question as to whether neuronal hypersynchronization, a key feature in seizure initiation, could result from aberrant structural connectivity within neuronal networks endowing them with epileptic properties. In the present study, we addressed this question using a genetic model of absence epilepsy in the rat where seizures initiate in the whisker primary somatosensory cortex (wS1). We hypothesized that alterations in structural connectivity of neuronal networks within wS1 contribute to pathological neuronal synchronization responsible for seizures. First, we used rabies virus-mediated retrograde synaptic tracing and showed that cortical neurons located in both upper- and deep-layers of wS1 displayed aberrant and significantly increased connectivity in the genetic model of absence epilepsy, as highlighted by a higher number of presynaptic partners. Next, we showed at the functional level that disrupting these aberrant wS1 neuronal networks with synchrotron X-ray-mediated cortical microtransections drastically decreased both the synchronization and seizure power of wS1 neurons, as revealed by in vivo local field potential recordings with multichannel probes. Taken together, our data provide for the first time strong evidence that increased structural connectivity patterns of cortical neurons represent critical pathological substrates for increased neuronal synchronization and generation of absence seizures.


Assuntos
Epilepsia Tipo Ausência , Animais , Eletroencefalografia , Epilepsia Tipo Ausência/genética , Neurônios/fisiologia , Ratos , Convulsões , Vibrissas
5.
Cureus ; 13(11): e19317, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35223216

RESUMO

Conventional radiotherapy is a widely used non-invasive form of treatment for many types of cancer. However, due to a low threshold in the lung for radiation-induced normal tissue damage, it is of less utility in treating lung cancer. For this reason, surgery is the preferred treatment for lung cancer, which has the detriment of being highly invasive. Non-conventional ultra-high dose rate (FLASH) radiotherapy is currently of great interest in the radiotherapy community due to demonstrations of reduced normal tissue toxicity in lung and other anatomy. This study investigates the effects of FLASH microbeam radiotherapy, which in addition to ultra-high dose rate incorporates a spatial segmentation of the radiation field, on the normal lung tissue of rats. With a focus on fibrotic damage, this work demonstrates that FLASH microbeam radiotherapy provides an order of magnitude increase in normal tissue radio-resistance compared to FLASH radiotherapy. This result suggests FLASH microbeam radiotherapy holds promise for much improved non-invasive control of lung cancer.

6.
Int J Radiat Oncol Biol Phys ; 110(2): 521-525, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33383127

RESUMO

PURPOSE: Radiation therapy is an important treatment component for patients with lung cancer. However, the survival time gained with clinical radiation therapy techniques is relatively short. Data from preclinical experiments suggest that synchrotron microbeam radiation therapy could be much better suited to control malignant brain tumors than current clinical concepts of radiation therapy. Even at peak doses of several hundred gray, the extent of functional deficits is low. METHODS AND MATERIALS: We have developed the first mouse model to study the effects of microbeam irradiation in lung tissue. RESULTS: Up to peak doses of 400 Gy, no acute adverse effects were seen. CONCLUSION: This model is well suited to explore the potential of microbeam radiation therapy in the treatment of lung cancer and the response of normal lung tissue and organs at risk.


Assuntos
Modelos Animais de Doenças , Pulmão/efeitos da radiação , Síncrotrons , Animais , Cardiotoxicidade , Estudos de Viabilidade , Histonas/análise , Neoplasias Pulmonares/radioterapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Órgãos em Risco/efeitos da radiação , Projetos Piloto , Dosagem Radioterapêutica
7.
Phys Med ; 71: 161-167, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32163884

RESUMO

The use of synchrotron X-ray sources provides innovative approaches in radiation therapy. The unique possibility to generate quasi-parallel beams promoted the development of microbeam radiation therapy (MRT), an innovative approach able to reduce damages to normal tissues while delivering considerable doses in the lesion. Accurate dosimetry in broad-beam configuration (prior to the spatial fractionation of the incident X-ray fan) is very challenging at ultra-high dose rate synchrotron sources. The available reference dosimetry protocol based on the use of a PTW PinPoint ionization chamber was compared with alanine dosimetry at the European Synchrotron Radiation Facility (ESRF) ID17 Biomedical beamline, an orthovoltage X-ray source with an average dose rate of 11.6 kGy/s. Reference dose measurements of the alanine pellets were performed at the National Centre for Radiation Research and Technology (NCRRT) 60Co facility in Egypt. All alanine dosimeters were analysed by an electron paramagnetic resonance spectrometer. We determined a relative response rESRF = 0.932 ± 0.027 (1σ) of the alanine pellets irradiated at the ESRF compared to the 60Co facility. Considering the appropriate corrections for the ESRF polychromatic spectrum and the different field size used, our result is in agreement with the previous work of Waldeland et al. for which the utilised alanine contained the same amount of binder, and it is consistent with the works of Anton et al. and Butler et al. for which the utilised alanine contained a higher amount of binder. We confirm that alanine is an appropriate dosimeter for ultra-high dose rate calibration of orthovoltage X-ray sources.


Assuntos
Alanina , Dosímetros de Radiação , Radiometria/métodos , Dosagem Radioterapêutica , Síncrotrons , Algoritmos , Radioisótopos de Cobalto , Espectroscopia de Ressonância de Spin Eletrônica , Fótons , Reprodutibilidade dos Testes , Raios X
8.
Med Phys ; 47(1): 213-222, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31680274

RESUMO

PURPOSE: Microbeam radiation therapy (MRT) is an emerging radiation oncology modality ideal for treating inoperable brain tumors. MRT employs quasi-parallel beams of low-energy x rays produced from modern synchrotrons. A tungsten carbide multislit collimator (MSC) spatially fractionates the broad beam into rectangular beams. In this study, the MSC creates beams 50 µm wide ("peaks") separated by a center-to-center distance of 400 µm ("valleys"). The peak to valley dose ratio (PVDR) is of critical importance to the efficacy of MRT. The underlying radiobiological advantage of MRT relies on high peak dose for tumor control and low valley dose for healthy tissue sparing. Cardio synchronous brain motion of the order 100-200 µm is comparable to microbeam width and spacing. The motion can have a detrimental effect on the PVDR, full width at half maximum (FWHM) of the microbeams, and ultimately the dose distribution. We present the first experimental measurement of the effect of brain motion on MRT dose distribution. Dosimetry in MRT is difficult due to the high dose rate (up to 15-20 kGy/s) and small field sizes. METHODS: A real-time dosimetry system based on a single silicon strip detector (SSSD) has been developed with spatial resolution ~10 µm. The SSSD was placed in a water-equivalent phantom and scanned through the microbeam distribution. A monodirectional positioning stage reproduced brain motion during the acquisition. Microbeam profiles were reconstructed from the SSSD and compared with Geant4 simulation and radiochromic HD-V2 film. RESULTS: The SSSD is able to reconstruct dose profiles within 2 µm compared to film. When brain motion is applied the SSSD shows a two time increase in FWHM of profiles and 50% reduction in PVDR. This is confirmed by Geant4 and film data. CONCLUSIONS: Motion-induced misalignment and distortion of microbeams at treatment delivery will result in a reduced PVDR and increased irradiation of additional healthy tissue compromising the radiobiological effectiveness of MRT. The SSSD was able to reconstruct dose profiles under motion conditions and predict similar effects on FWHM and PVDR as by the simulation. The SSSD is a simple to setup, real-time detector which can provide time-resolved high spatial resolution dosimetry of microbeams in MRT.


Assuntos
Neoplasias Encefálicas/radioterapia , Coração/fisiologia , Movimento , Doses de Radiação , Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/fisiopatologia , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica , Síncrotrons
9.
Sci Rep ; 9(1): 17082, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745153

RESUMO

The functional roles of the Caudate nucleus (Cd) are well known. Selective Cd lesions can be found in neurological disorders. However, little is known about the dynamics of the behavioral changes during progressive Cd ablation. Current stereotactic radiosurgery technologies allow the progressive ablation of a brain region with limited adverse effects in surrounding normal tissues. This could be of high interest for the study of the modified behavioral functions in relation with the degree of impairment of the brain structures. Using hypofractionated stereotactic radiotherapy combined with synchrotron microbeam radiation, we investigated, during one year after irradiation, the effects of unilateral radio-ablation of the right Cd on the behavior of Yucatan minipigs. The right Cd was irradiated to a minimal dose of 35.5 Gy delivered in three fractions. MRI-based morphological brain integrity and behavioral functions, i.e. locomotion, motivation/hedonism were assessed. We detected a progressive radio-necrosis leading to a quasi-total ablation one year after irradiation, with an additional alteration of surrounding areas. Transitory changes in the motivation/hedonism were firstly detected, then on locomotion, suggesting the influence of different compensatory mechanisms depending on the functions related to Cd and possibly some surrounding areas. We concluded that early behavioral changes related to eating functions are relevant markers for the early detection of ongoing lesions occurring in Cd-related neurological disorders.


Assuntos
Comportamento Animal/efeitos da radiação , Encéfalo/patologia , Núcleo Caudado/patologia , Irradiação Craniana/efeitos adversos , Comportamento Alimentar/efeitos da radiação , Locomoção/efeitos da radiação , Lesões por Radiação/patologia , Animais , Encéfalo/efeitos da radiação , Núcleo Caudado/efeitos da radiação , Masculino , Lesões por Radiação/etiologia , Suínos , Porco Miniatura , Síncrotrons
10.
Phys Med ; 65: 227-237, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31574356

RESUMO

Microbeam radiation therapy (MRT) uses synchrotron arrays of X-ray microbeams to take advantage of the spatial fractionation effect for normal tissue sparing. In this study, radiochromic film dosimetry was performed for a treatment where MRT is introduced as a dose boost in a hypofractionated stereotactic radiotherapy (SRT) scheme. The isocenter dose was measured using an ionization chamber and two dimensional dose distributions were determined using radiochromic films. To compare the measured dose distribution to the MRT treatment plan, peak and valley were displayed in separate dosemaps. The measured and computed isocenter doses were compared and a two-dimensional 2%/2 mm normalized γ-index analysis with a 90% passing rate criterion was computed. For SRT, a difference of 2.6% was observed in the dose at the isocenter from the treatment plan and film measurement, with a passing rate of 96% for the γ-index analysis. For MRT, peak and valley doses differences of 25.6% and 8.2% were observed, respectively but passing rates of 96% and 90% respectively were obtained from the normalized γ-index maps. The differences in isocenter doses measured in MRT should be further investigated. We present the methodology of patient specific quality assurance (QA) for studying MRT dose distributions and discuss ideas to improve absolute dosimetry. This patient specific QA will be used for large animal trials quality assurance where MRT will be administered as a dose boost in conventional SRT. The observed remaining discrepancies should be studied against approximations in the TPS phantom materials, beams characteristics or film read-out procedures.


Assuntos
Dosimetria Fotográfica/métodos , Radioterapia/métodos , Neoplasias Encefálicas/radioterapia , Fracionamento da Dose de Radiação , Humanos , Imagens de Fantasmas , Radiometria/métodos , Dosagem Radioterapêutica , Síncrotrons , Raios X
11.
Radiother Oncol ; 139: 56-61, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31307824

RESUMO

This paper reviews the current state of the art of an emerging form of radiosurgery dedicated to brain tumour treatment and which operates at very high dose rate (kGy·s-1). Microbeam Radiation Therapy uses synchrotron-generated X-rays which triggered normal tissue sparing partially mediated by FLASH effect.


Assuntos
Neoplasias Encefálicas/radioterapia , Radiocirurgia/métodos , Síncrotrons , Animais , Neoplasias Encefálicas/irrigação sanguínea , Protocolos Clínicos , Modelos Animais de Doenças , Humanos , Raios X
12.
J Clin Neurosci ; 67: 215-219, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31281087

RESUMO

We formulated an ultra-small, gadolinium-based nanoparticle (AGuIX) with theranostic properties to simultaneously enhance MRI tumor delineation and radiosensitization in a glioma model. The 9L glioma cells were orthotopically implanted in 10-week-old Fischer rats. The intra-tumoral accumulation of AGuIX was quantified using MRI T1-maps. Rats randomized to intervention cohorts were subsequently treated with daily temozolomide for five consecutive days before radiotherapy treatment. Collectively, a series of 32 rats were divided into untreated (n = 7), temozolomide-only (n = 7), temozolomide and MRT (n = 9), AGuIX and MRT (n = 7), and triple therapy (temozolomide, AGuIX NPs, and MRT; n = 9) cohorts. AGuIX nanoparticles achieved a maximum intra-tumoral concentration (expressed as concentration of Gd3+) at 1 h after intravenous injection, reaching a mean of 227.9 ±â€¯60 µM. This was compared to concentrations of 10.5 ±â€¯9.2 µM and 62.9 ±â€¯24.7 µM in the contralateral hemisphere and cheek, respectively. There was a slower washout in the intra-tumor region, with sustained tumor-to-contralateral ratio of AGuIX, up to 14-fold, for each time point. The combination of AGuIX or temozolomide with MRT improved the median survival time (40 days) compared to the MeST of control rats (25 days) (p < 0.002). There was a trend towards further increased survival when the three treatments were combined (MeST of 46 days). This study demonstrated the selective accumulation of AGuIX in high grade glioma, as well as the potential survival benefits when combined with chemoradiation.


Assuntos
Neoplasias Encefálicas/patologia , Gadolínio , Glioma/patologia , Radiossensibilizantes/farmacologia , Nanomedicina Teranóstica , Animais , Quimiorradioterapia/métodos , Meios de Contraste/farmacologia , Imageamento por Ressonância Magnética/métodos , Masculino , Nanopartículas , Ratos , Ratos Endogâmicos F344 , Temozolomida/farmacologia
13.
Phys Med ; 57: 169-176, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30738521

RESUMO

A radiation colour former amino fluoran dye, Pergascript Orange (PGO), in a polyvinyl butyral solution containing a colour developer, hexachloroethane (HCE), was prepared and investigated for radiotherapy dosimetry of 60Co, 6 MV and 15 MV photons. PGO, a colourless dye, reacts with the acid produced upon radiation exposure of HCE, enabling the lactone ring to open and the orange colour of PGO to develop. The ring opening of PGO was confirmed by the appearance of a broad peak of OH- at 3360 cm-1, CO carboxylic peak at 1763 cm-1, and an iminium group peak at 1640 cm-1. The dose response of all prepared compositions was linear in the dose range of 1-20 Gy. Increasing HCE in the dosimeter matrix from 63 mM to 106 mM enhanced the radiation sensitivity by ≈58%. The radiation sensitivity of PGO-PVB (PGO-P) dosimeter is comparable with Fricke gel and higher than N-(Isobutoxymethyl) acrylamide polymer gel dosimeters. The experimental results reveal an energy-independent response (≈1.2% variation at 1σ) in the studied range of radiotherapy beam quality from 60Co beams to the beams from Linacs with a maximum energy of 15 MeV. Based on the theoretical study, this dosimeter is water equivalent from 80 keV to 10 MeV. The overall uncertainty was found to be 4.5% at the 95% confidence level, indicating the possibility of using PGO-P dosimeter in conventional radiotherapy dose verification.


Assuntos
Polímeros/química , Dosímetros de Radiação , Radioterapia , Soluções
14.
Phys Med Biol ; 64(6): 065005, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30650386

RESUMO

MOTIVATION: With interlaced microbeam radiation therapy (MRT) a first kilovoltage radiotherapy (RT) concept combining spatially fractionated entrance beams and homogeneous dose distribution at the target exists. However, this technique suffers from its high sensitivity to positioning errors of the target relative to the radiation source. With spiral microbeam radiation therapy (spiralMRT), this publication introduces a new irradiation geometry, offering similar spatial fractionation properties as interlaced MRT, while being less vulnerable to target positioning uncertainties. METHODS: The dose distributions achievable with spiralMRT in a simplified human head geometry were calculated with Monte Carlo simulations based on Geant4 and the dependence of the result on the microbeam pitch, total field size, and photon energy were analysed. A comparison with interlaced MRT and conventional megavoltage tomotherapy was carried out. RESULTS: SpiralMRT can deliver homogeneous dose distributions, while using spatially fractionated entrance beams. The valley dose of spiralMRT entrance beams is by up to 40% lower than the corresponding tomotherapy dose, thus indicating a better normal tissue sparing. The optimum photon energy is found to be around [Formula: see text]. CONCLUSIONS: SpiralMRT is a promising approach to delivering homogeneous dose distributions with spatially fractionated entrance beams, possibly decreasing normal tissue side effects in hypofractionated RT.


Assuntos
Algoritmos , Cabeça/diagnóstico por imagem , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Fracionamento da Dose de Radiação , Humanos
15.
Radiother Oncol ; 129(3): 582-588, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30177374

RESUMO

This study is the first proof of concept that the FLASH effect can be triggered by X-rays. Our results show that a 10 Gy whole-brain irradiation delivered at ultra-high dose-rate with synchrotron generated X-rays does not induce memory deficit; it reduces hippocampal cell-division impairment and induces less reactive astrogliosis.


Assuntos
Lesões Encefálicas/prevenção & controle , Irradiação Craniana/efeitos adversos , Lesões Experimentais por Radiação/prevenção & controle , Síncrotrons , Animais , Irradiação Craniana/métodos , Feminino , Hipocampo/efeitos da radiação , Memória/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Raios X
16.
Int J Radiat Oncol Biol Phys ; 101(3): 680-689, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29559293

RESUMO

PURPOSE: To analyze the effects of micro-beam irradiation (MBI) on the normal tissues of the mouse ear. METHODS AND MATERIALS: Normal mouse ears are a unique model, which in addition to skin contain striated muscles, cartilage, blood and lymphatic vessels, and few hair follicles. This renders the mouse ear an excellent model for complex tissue studies. The ears of C57BL6 mice were exposed to MBI (50-µm-wide micro-beams, spaced 200 µm between centers) with peak entrance doses of 200, 400, or 800 Gy (at ultra-high dose rates). Tissue samples were examined histopathologically, with conventional light and electron microscopy, at 2, 7, 15, 30, and 240 days after irradiation (dpi). Sham-irradiated animals acted as controls. RESULTS: Only an entrance dose of 800 Gy caused a significant increase in the thickness of both epidermal and dermal ear compartments seen from 15 to 30 dpi; the number of sebaceous glands was significantly reduced by 30 dpi. The numbers of apoptotic bodies and infiltrating leukocytes peaked between 15 and 30 dpi. Lymphatic vessels were prominently enlarged at 15 up to 240 dpi. Sarcomere lesions in striated muscle were observed after all doses, starting from 2 dpi; scar tissue within individual beam paths remained visible up to 240 dpi. Cartilage and blood vessel changes remained histologically inconspicuous. CONCLUSIONS: Normal tissues such as skin, cartilage, and blood and lymphatic vessels are highly tolerant to MBI after entrance doses up to 400 Gy. The striated muscles appeared to be the most sensitive to MBI. Those findings should be taken into consideration in future micro-beam radiation therapy treatment schedules.


Assuntos
Orelha/efeitos da radiação , Lesões Experimentais por Radiação/etiologia , Síncrotrons , Terapia por Raios X/efeitos adversos , Terapia por Raios X/instrumentação , Animais , Relação Dose-Resposta à Radiação , Orelha/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Lesões Experimentais por Radiação/patologia , Fatores de Tempo
17.
Dose Response ; 16(1): 1559325817750068, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29383012

RESUMO

To evaluate microbeam radiation therapy (MRT), for brain tumor treatment, the bystander effect in nonirradiated companion animals was investigated. Adult rats were irradiated with 35 or 350 Gy at the European Synchrotron Research Facility using homogenous irradiation (HR) or MRT to the right brain hemisphere. The irradiated rats were housed with nonirradiated rats. After 48 hours, all rats were euthanized and the frontal lobe proteome was analyzed using 2-dimensional electrophoresis and mass spectrometry. Proteome changes were determined by analysis of variance (P < .05). Homogenous irradiation increased serum albumin, heat shock protein 71 (HSP-71), triosephosphate isomerase (TPI), fructose bisphosphate aldolase (FBA), and prohibitin and decreased dihydrolipoyl dehydrogenase (DLD) and pyruvate kinase. Microbeam radiation therapy increased HSP-71, FBA, and prohibitin, and decreased aconitase, dihydropyrimidinase, TPI, tubulin DLD, and pyruvate kinase. Cage mates with HR irradiated rats showed increased HSP-71 and FBA and decreased pyruvate kinase, DLD, and aconitase. Cage mates with MRT irradiated rats showed increased HSP-71, prohibitin, and FBA and decreased aconitase and DLD. Homogenous irradiation proteome changes indicated tumorigenesis, while MRT proteome changes indicated an oxidative stress response. The bystander effect of proteome changes appeared antitumorigenic and inducing radioresistance. This investigation also supports the need for research into prohibitin interaction with HSP-70/71 chaperones and cancer therapy.

18.
Sci Rep ; 8(1): 184, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317649

RESUMO

Synchrotron-generated microplanar beams (microbeams) provide the most stereo-selective irradiation modality known today. This novel irradiation modality has been shown to control seizures originating from eloquent cortex causing no neurological deficit in experimental animals. To test the hypothesis that application of microbeams in the hippocampus, the most common source of refractory seizures, is safe and does not induce severe side effects, we used microbeams to induce transections to the hippocampus of healthy rats. An array of parallel microbeams carrying an incident dose of 600 Gy was delivered to the rat hippocampus. Immunohistochemistry of phosphorylated γ-H2AX showed cell death along the microbeam irradiation paths in rats 48 hours after irradiation. No evident behavioral or neurological deficits were observed during the 3-month period of observation. MR imaging showed no signs of radio-induced edema or radionecrosis 3 months after irradiation. Histological analysis showed a very well preserved hippocampal cytoarchitecture and confirmed the presence of clear-cut microscopic transections across the hippocampus. These data support the use of synchrotron-generated microbeams as a novel tool to slice the hippocampus of living rats in a minimally invasive way, providing (i) a novel experimental model to study hippocampal function and (ii) a new treatment tool for patients affected by refractory epilepsy induced by mesial temporal sclerosis.


Assuntos
Hipocampo/efeitos da radiação , Radiocirurgia/efeitos adversos , Animais , Hipocampo/metabolismo , Hipocampo/fisiologia , Histonas/genética , Histonas/metabolismo , Masculino , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Radiocirurgia/instrumentação , Radiocirurgia/métodos , Ratos , Ratos Wistar , Síncrotrons
19.
Phys Med Biol ; 63(4): 045013, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29324439

RESUMO

Microbeam radiation therapy (MRT) is still a preclinical approach in radiation oncology that uses planar micrometre wide beamlets with extremely high peak doses, separated by a few hundred micrometre wide low dose regions. Abundant preclinical evidence demonstrates that MRT spares normal tissue more effectively than conventional radiation therapy, at equivalent tumour control. In order to launch first clinical trials, accurate and efficient dose calculation methods are an inevitable prerequisite. In this work a hybrid dose calculation approach is presented that is based on a combination of Monte Carlo and kernel based dose calculation. In various examples the performance of the algorithm is compared to purely Monte Carlo and purely kernel based dose calculations. The accuracy of the developed algorithm is comparable to conventional pure Monte Carlo calculations. In particular for inhomogeneous materials the hybrid dose calculation algorithm out-performs purely convolution based dose calculation approaches. It is demonstrated that the hybrid algorithm can efficiently calculate even complicated pencil beam and cross firing beam geometries. The required calculation times are substantially lower than for pure Monte Carlo calculations.


Assuntos
Algoritmos , Método de Monte Carlo , Neoplasias/radioterapia , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Cabeça/efeitos da radiação , Humanos , Dosagem Radioterapêutica
20.
Int J Radiat Biol ; 94(8): 708-718, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29309203

RESUMO

PURPOSE: This review follows the development of microbeam technology from the early days of single cell irradiations, to investigations of specific cellular mechanisms and to the development of new treatment modalities in vivo. A number of microbeam applications are discussed with a focus on pre-clinical modalities and translation towards clinical application. CONCLUSIONS: The development of radiation microbeams has been a valuable tool for the exploration of fundamental radiobiological response mechanisms. The strength of micro-irradiation techniques lies in their ability to deliver precise doses of radiation to selected individual cells in vitro or even to target subcellular organelles. These abilities have led to the development of a range of microbeam facilities around the world allowing the delivery of precisely defined beams of charged particles, X-rays, or electrons. In addition, microbeams have acted as mechanistic probes to dissect the underlying molecular events of the DNA damage response following highly localized dose deposition. Further advances in very precise beam delivery have also enabled the transition towards new and exciting therapeutic modalities developed at synchrotrons to deliver radiotherapy using plane parallel microbeams, in Microbeam Radiotherapy (MRT).


Assuntos
Radiobiologia/métodos , Análise de Célula Única/métodos , Animais , Comunicação Celular/efeitos da radiação , Espaço Intracelular/metabolismo , Espaço Intracelular/efeitos da radiação , Radiometria , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...