Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 17(9): 820-826, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29891887

RESUMO

Tandem devices combining perovskite and silicon solar cells are promising candidates to achieve power conversion efficiencies above 30% at reasonable costs. State-of-the-art monolithic two-terminal perovskite/silicon tandem devices have so far featured silicon bottom cells that are polished on their front side to be compatible with the perovskite fabrication process. This concession leads to higher potential production costs, higher reflection losses and non-ideal light trapping. To tackle this issue, we developed a top cell deposition process that achieves the conformal growth of multiple compounds with controlled optoelectronic properties directly on the micrometre-sized pyramids of textured monocrystalline silicon. Tandem devices featuring a silicon heterojunction cell and a nanocrystalline silicon recombination junction demonstrate a certified steady-state efficiency of 25.2%. Our optical design yields a current density of 19.5 mA cm-2 thanks to the silicon pyramidal texture and suggests a path for the realization of 30% monolithic perovskite/silicon tandem devices.

2.
Phys Rev Lett ; 103(19): 196801, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-20365940

RESUMO

We investigate the temperature dependence of conductivity in ballistic graphene using Landauer transport theory. We obtain results which are qualitatively in agreement with many features recently observed in transport measurements on high mobility suspended graphene. The conductivity sigma at high temperature T and low density n grows linearly with T, while at high n we find sigma approximately square root(|n|) with negative corrections at small T due to the T dependence of the chemical potential. At moderate densities the conductivity is a nonmonotonic function of T and n, exhibiting a minimum at T=0.693 hv square root(|n|) where v is the Fermi velocity. We discuss two kinds of Fabry-Perot oscillations in short nanoribbons and their stability at finite temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...