Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
F1000Res ; 12: 542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38778808

RESUMO

Ichthyosporea, a clade of holozoans, represent a clade closely related to animals, and thus hold a key phylogenetic position for understanding the origin of animals. We have previously discovered that an ichthyosporean, Sphaeroforma arctica, contains microRNAs (miRNAs) as well as the miRNA processing machinery. This was the first discovery of miRNAs among the closest single-celled relatives of animals and raised intriguing questions about the roles of regulatory small RNAs in cell development and differentiation in unicellular eukaryotes. Like many ichthyosporeans, S. arctica also undergoes a transient multicellular developmental life cycle. As miRNAs are, among other roles, key regulators of gene expression during development in animals, we wanted to investigate the dynamics of miRNAs during the developmental cycle in S. arctica. Here we have therefore collected a comprehensive time-resolved small RNA transcriptome linked to specific life stages with a substantially higher sequencing depth than before, which can enable further discovery of functionally relevant small RNAs. The data consists of Illumina-sequenced small RNA libraries from two independent biological replicates of the entire life cycle of S. arctica with high temporal resolution. The dataset is directly linked and comes from the same samples as a previously published mRNA-seq dataset, thus enabling direct cross-functional analyses.


Assuntos
Transcriptoma , Mesomycetozoea/genética , MicroRNAs/genética , Perfilação da Expressão Gênica
2.
Viruses ; 14(12)2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36560738

RESUMO

Extensive genomic surveillance has given great insights into the evolution of the SARS-CoV-2 virus and emerging variants. During the summer months of 2021, Norway was dominated by the Pango lineage AY.63 which is a sub-lineage of the highly transmissible Delta variant. Strikingly, AY.63 did not spread in other countries to any significant extent. AY.63 carried a key mutation, A222V, in the spike protein, as well as the deletion of three residues in nsp1. Although these mutations are close to functionally important areas, we did not find any evidence that they induced higher fitness compared to other Delta lineages. This variant was introduced to Norway at a time when there were low levels of SARS-CoV-2 and contact-reducing measures were relaxed, which probably explains why the lineage rose so quickly. Furthermore, we found that the lack of imports of AY.63 from other countries probably led to the eventual demise of the lineage in Norway.


Assuntos
COVID-19 , Humanos , Epidemiologia Molecular , COVID-19/epidemiologia , SARS-CoV-2/genética , Noruega/epidemiologia
3.
Virus Evol ; 7(2): veab086, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659798

RESUMO

As the COVID-19 pandemic swept through an immunologically naïve human population, academics and public health professionals scrambled to establish methods and platforms for genomic surveillance and data sharing. This offered a rare opportunity to study the ecology and evolution of SARS-CoV-2 over the course of the ongoing pandemic. Here, we use population genetic and phylogenetic methodology to characterize the population dynamics of SARS-CoV-2 and reconstruct patterns of virus introductions and local transmission in Norway against this backdrop. The analyses demonstrated that the epidemic in Norway was largely import driven and characterized by the repeated introduction, establishment, and suppression of new transmission lineages. This pattern changed with the arrival of the B.1.1.7 lineage, which was able to establish a stable presence concomitant with the imposition of severe border restrictions.

4.
Sci Rep ; 11(1): 12820, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140556

RESUMO

The macroscopic single-celled green alga Acetabularia acetabulum has been a model system in cell biology for more than a century. However, no genomic information is available from this species. Since the alga has a long life cycle, is difficult to grow in dense cultures, and has an estimated diploid genome size of almost 2 Gb, obtaining sufficient genomic material for genome sequencing is challenging. Here, we have attempted to overcome these challenges by amplifying genomic DNA using multiple displacement amplification (MDA) combined with microfluidics technology to distribute the amplification reactions across thousands of microscopic droplets. By amplifying and sequencing DNA from five single cells we were able to recover an estimated ~ 7-11% of the total genome, providing the first draft of the A. acetabulum genome. We highlight challenges associated with genome recovery and assembly of MDA data due to biases arising during genome amplification, and hope that our study can serve as a reference for future attempts on sequencing the genome from non-model eukaryotes.


Assuntos
Acetabularia/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Sequenciamento Completo do Genoma , Acetabularia/citologia , Acetabularia/isolamento & purificação , DNA/genética , Genoma , Anotação de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
5.
J Phycol ; 57(4): 1223-1233, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33721355

RESUMO

Here, we present new transcriptome sequencing data from seven species of Dasycladales (Ulvophyceae) and a phylogenomic analysis of the Chlorophyta with a particular focus on Ulvophyceae. We have focused on a broad selection of green algal groups and carefully selected genes suitable for reconstructing deep eukaryote evolutionary histories. Increasing the taxon sampling of Dasycladales restructures the Ulvophyceae by identifying Dasycladales as closely related to Scotinosphaerales and Oltmannsiellopsidales. Contrary to previous studies, we do not find support for a close relationship between Dasycladales and a group with Cladophorales and Trentepohliales. Instead, the latter group is sister to the remainder of the Ulvophyceae. Furthermore, our analyses show high and consistent statistical support for a sister relationship between Bryopsidales and Chlorophyceae in trees generated with both homogeneous and heterogeneous (heterotachy) evolutionary models. Our study provides a new framework for interpreting the evolutionary history of Ulvophyceae and the evolution of cellular morphologies.


Assuntos
Clorofíceas , Clorófitas , Clorófitas/genética , Eucariotos , Evolução Molecular , Filogenia
7.
F1000Res ; 8: 401, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632652

RESUMO

Hydrurusfoetidus is a freshwater chrysophyte alga. It thrives in cold rivers in polar and high alpine regions. It has several morphological traits reminiscent of single-celled eukaryotes, but can also form macroscopic thalli. Despite its ability to produce polyunsaturated fatty acids, its life under cold conditions and its variable morphology, very little is known about its genome and transcriptome. Here, we present an extensive set of next-generation sequencing data, including genomic short reads from Illumina sequencing and long reads from Nanopore sequencing, as well as full length cDNAs from PacBio IsoSeq sequencing and a small RNA dataset (smaller than 200 bp) sequenced with Illumina. The genome sequences were combined  to produce an assembly consisting of 5069 contigs, with a total assembly size of 171 Mb and a 77% BUSCO completeness. The new data generated here may contribute to a better understanding of the evolution and ecological roles of chrysophyte algae, as well as to resolve the branching patterns at a larger phylogenetic scale.

8.
Elife ; 82019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31647412

RESUMO

In animals, cellularization of a coenocyte is a specialized form of cytokinesis that results in the formation of a polarized epithelium during early embryonic development. It is characterized by coordinated assembly of an actomyosin network, which drives inward membrane invaginations. However, whether coordinated cellularization driven by membrane invagination exists outside animals is not known. To that end, we investigate cellularization in the ichthyosporean Sphaeroforma arctica, a close unicellular relative of animals. We show that the process of cellularization involves coordinated inward plasma membrane invaginations dependent on an actomyosin network and reveal the temporal order of its assembly. This leads to the formation of a polarized layer of cells resembling an epithelium. We show that this stage is associated with tightly regulated transcriptional activation of genes involved in cell adhesion. Hereby we demonstrate the presence of a self-organized, clonally-generated, polarized layer of cells in a unicellular relative of animals.


Assuntos
Actomiosina/metabolismo , Membrana Celular/metabolismo , Polaridade Celular , Mesomycetozoea/fisiologia , Animais , Regulação da Expressão Gênica
9.
Curr Biol ; 28(20): 3288-3295.e5, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30318349

RESUMO

The emergence of multicellular animals was associated with an increase in phenotypic complexity and with the acquisition of spatial cell differentiation and embryonic development. Paradoxically, this phenotypic transition was not paralleled by major changes in the underlying developmental toolkit and regulatory networks. In fact, most of these systems are ancient, established already in the unicellular ancestors of animals [1-5]. In contrast, the Microprocessor protein machinery, which is essential for microRNA (miRNA) biogenesis in animals, as well as the miRNA genes themselves produced by this Microprocessor, have not been identified outside of the animal kingdom [6]. Hence, the Microprocessor, with the key proteins Pasha and Drosha, is regarded as an animal innovation [7-9]. Here, we challenge this evolutionary scenario by investigating unicellular sister lineages of animals through genomic and transcriptomic analyses. We identify in Ichthyosporea both Drosha and Pasha (DGCR8 in vertebrates), indicating that the Microprocessor complex evolved long before the last common ancestor of animals, consistent with a pre-metazoan origin of most of the animal developmental gene elements. Through small RNA sequencing, we also discovered expressed bona fide miRNA genes in several species of the ichthyosporeans harboring the Microprocessor. A deep, pre-metazoan origin of the Microprocessor and miRNAs comply with a view that the origin of multicellular animals was not directly linked to the innovation of these key regulatory components.


Assuntos
Evolução Molecular , Mesomycetozoea/genética , MicroRNAs/genética , Animais , Sequência de Bases , Mesomycetozoea/metabolismo , MicroRNAs/metabolismo , Filogenia
10.
Mol Biol Evol ; 34(7): 1557-1573, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333264

RESUMO

The innovation of the eukaryote cytoskeleton enabled phagocytosis, intracellular transport, and cytokinesis, and is largely responsible for the diversity of morphologies among eukaryotes. Still, the relationship between phenotypic innovations in the cytoskeleton and their underlying genotype is poorly understood. To explore the genetic mechanism of morphological evolution of the eukaryotic cytoskeleton, we provide the first single cell transcriptomes from uncultured, free-living unicellular eukaryotes: the polycystine radiolarian Lithomelissa setosa (Nassellaria) and Sticholonche zanclea (Taxopodida). A phylogenomic approach using 255 genes finds Radiolaria and Foraminifera as separate monophyletic groups (together as Retaria), while Cercozoa is shown to be paraphyletic where Endomyxa is sister to Retaria. Analysis of the genetic components of the cytoskeleton and mapping of the evolution of these on the revised phylogeny of Rhizaria reveal lineage-specific gene duplications and neofunctionalization of α and ß tubulin in Retaria, actin in Retaria and Endomyxa, and Arp2/3 complex genes in Chlorarachniophyta. We show how genetic innovations have shaped cytoskeletal structures in Rhizaria, and how single cell transcriptomics can be applied for resolving deep phylogenies and studying gene evolution in uncultured protist species.


Assuntos
Rhizaria/classificação , Rhizaria/genética , Teorema de Bayes , Evolução Biológica , Eucariotos/genética , Células Eucarióticas , Evolução Molecular , Filogenia , Rhizaria/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Célula Única/métodos , Transcriptoma/genética , Tubulina (Proteína)/genética
11.
Proc Biol Sci ; 282(1821): 20151746, 2015 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-26702038

RESUMO

Long non-coding RNAs (lncRNAs) play important regulatory roles during animal development, and it has been hypothesized that an RNA-based gene regulation was important for the evolution of developmental complexity in animals. However, most studies of lncRNA gene regulation have been performed using model animal species, and very little is known about this type of gene regulation in non-bilaterians. We have therefore analysed RNA-Seq data derived from a comprehensive set of embryogenesis stages in the calcareous sponge Sycon ciliatum and identified hundreds of developmentally expressed intergenic lncRNAs (lincRNAs) in this species. In situ hybridization of selected lincRNAs revealed dynamic spatial and temporal expression during embryonic development. More than 600 lincRNAs constitute integral parts of differentially expressed gene modules, which also contain known developmental regulatory genes, e.g. transcription factors and signalling molecules. This study provides insights into the non-coding gene repertoire of one of the earliest evolved animal lineages, and suggests that RNA-based gene regulation was probably present in the last common ancestor of animals.


Assuntos
Poríferos/genética , RNA Longo não Codificante/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Poríferos/embriologia , Análise de Componente Principal , Transcriptoma
12.
Nat Commun ; 5: 3905, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24844197

RESUMO

Elucidation of macroevolutionary transitions between diverse animal body plans remains a major challenge in evolutionary biology. We address the sponge-eumetazoan transition by analyzing expression of a broad range of eumetazoan developmental regulatory genes in Sycon ciliatum (Calcispongiae). Here we show that many members of surprisingly numerous Wnt and Tgfß gene families are expressed higher or uniquely in the adult apical end and the larval posterior end. Genes involved in formation of the eumetazoan endomesoderm, such as ß-catenin, Brachyury and Gata, as well as germline markers Vasa and Pl10, are expressed during formation and maintenance of choanoderm, the feeding epithelium of sponges. Similarity in developmental gene expression between sponges and eumetazoans, especially cnidarians, is consistent with Haeckel's view that body plans of sponges and cnidarians are homologous. These results provide a framework for further studies aimed at deciphering ancestral developmental regulatory networks and their modifications during animal body plans evolution.


Assuntos
Padronização Corporal/genética , Cnidários/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Poríferos/genética , Animais , Sequência de Bases , Proteínas Fetais/genética , Fatores de Transcrição GATA/genética , Dados de Sequência Molecular , Proteínas com Domínio T/genética , Fator de Crescimento Transformador beta/genética , Proteínas Wnt/genética , beta Catenina/genética
13.
Protist ; 163(5): 767-77, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22658831

RESUMO

We have isolated cells of unculturable radiolarians from marine coastal waters. Individual cells were subjected to single cell whole genome amplification (SCWGA) and gene-targeted PCR. Using this approach we recover a surprisingly large diversity of sequences related to the enigmatic marine alveolate groups 1 and 2 (MALV I and MALV II) that most likely represent intracellular symbionts or parasites of the radiolarian cells. 18S rDNA phylogeny of the MALV sequences reveals 4 distinct clades of radiolarian associates here named Radiolarian Associated Sequences (RAS) 1-4. One clade of both phaeodarian and radiolarian associates and one clade of only phaeodarian associates are also identified. The MALV sequences cluster according to host type, i.e. sequences from associates identified in radiolarians, fish, copepods, ciliates or dinoflagellates are not intermixed but separated into distinct clades. This implies several independent colonizations of host lineages and links a large diversity of MALV to radiolarian-associated species. This demonstrates that radiolarians may be an important reservoir for MALV, making them a key group for understanding the impact of intracellular symbionts on the marine ecosystem. This study shows that applying SCWGA on unculturable cells is a promising approach to study the vast diversity and interactions of intracellular eukaryote organisms.


Assuntos
Alveolados/classificação , Alveolados/isolamento & purificação , Cercozoários/isolamento & purificação , Cercozoários/parasitologia , Água do Mar/parasitologia , Simbiose , Cercozoários/fisiologia , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Dados de Sequência Molecular , Filogenia , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
14.
Mol Biol Evol ; 29(6): 1557-68, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22319147

RESUMO

The current consensus for the eukaryote tree of life consists of several large assemblages (supergroups) that are hypothesized to describe the existing diversity. Phylogenomic analyses have shed light on the evolutionary relationships within and between supergroups as well as placed newly sequenced enigmatic species close to known lineages. Yet, a few eukaryote species remain of unknown origin and could represent key evolutionary forms for inferring ancient genomic and cellular characteristics of eukaryotes. Here, we investigate the evolutionary origin of the poorly studied protist Collodictyon (subphylum Diphyllatia) by sequencing a cDNA library as well as the 18S and 28S ribosomal DNA (rDNA) genes. Phylogenomic trees inferred from 124 genes placed Collodictyon close to the bifurcation of the "unikont" and "bikont" groups, either alone or as sister to the potentially contentious excavate Malawimonas. Phylogenies based on rDNA genes confirmed that Collodictyon is closely related to another genus, Diphylleia, and revealed a very low diversity in environmental DNA samples. The early and distinct origin of Collodictyon suggests that it constitutes a new lineage in the global eukaryote phylogeny. Collodictyon shares cellular characteristics with Excavata and Amoebozoa, such as ventral feeding groove supported by microtubular structures and the ability to form thin and broad pseudopods. These may therefore be ancient morphological features among eukaryotes. Overall, this shows that Collodictyon is a key lineage to understand early eukaryote evolution.


Assuntos
Eucariotos/classificação , Tipagem de Sequências Multilocus , Filogenia , Teorema de Bayes , Eucariotos/enzimologia , Eucariotos/genética , Evolução Molecular , Biblioteca Gênica , Especiação Genética , Funções Verossimilhança , Modelos Genéticos , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Alinhamento de Sequência , Tetra-Hidrofolato Desidrogenase/genética , Timidilato Sintase/genética
15.
PLoS One ; 6(8): e23526, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21853146

RESUMO

Radiolarians are marine planktonic protists that belong to the eukaryote supergroup Rhizaria together with Foraminifera and Cercozoa. Radiolaria has traditionally been divided into four main groups based on morphological characters; i.e. Polycystina, Acantharia, Nassellaria and Phaeodaria. But recent 18S rDNA phylogenies have shown that Phaeodaria belongs within Cerocozoa, and that the previously heliozoan group Taxopodida should be included in Radiolaria. 18S rDNA phylogenies have not yet resolved the sister relationship between the main Radiolaria groups, but nevertheless suggests that Spumellaria, and thereby also Polycystina, are polyphyletic. Very few sequences other than 18S rDNA have so far been generated from radiolarian cells, mostly due to the fact that Radiolaria has been impossible to cultivate and single cell PCR has been hampered by low success rate. Here we have therefore investigated the mutual evolutionary relationship of the main radiolarian groups by using the novel approach of combining single cell whole genome amplification with targeted PCR amplification of the 18S and 28S rDNA genes. Combined 18S and 28S phylogeny of sequences obtained from single cells shows that Radiolaria is divided into two main lineages: Polycystina (Spumellaria+Nassellaria) and Spasmaria (Acantharia+Taxopodida). Further we show with high support that Foraminifera groups within Radiolaria supporting the Retaria hypothesis.


Assuntos
Filogenia , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Rhizaria/classificação , Rhizaria/genética , Sequência de Bases , Funções Verossimilhança , Rhizaria/citologia , Análise de Sequência de DNA
16.
J Eukaryot Microbiol ; 58(4): 315-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21518078

RESUMO

The Haptophyta is a common algal group in many marine environments, but only a few species have been observed in freshwaters, with DNA sequences available from just a single species, Crysochromulina parva Lackey, 1939. Here we investigate the haptophyte diversity in a high mountain lake, Lake Finsevatn, Norway, targeting the variable V4 region of the 18S rDNA gene with PCR and 454 pyrosequencing. In addition, the freshwater diversity of Pavlovophyceae was investigated by lineage-specific PCR-primers and clone library sequencing from another Norwegian lake, Lake Svaersvann. We present new freshwater phylotypes belonging to the classes Prymnesiophyceae and Pavlovophyceae, as well as a distinct group here named HAP-1. This is the first molecular evidence of a freshwater species belonging to the class Pavlovophyceae. The HAP-1 and another recently detected marine group (i.e. HAP-2) are separated from both Pavlovophyceae and Prymnesiophyceae and may constitute new higher order taxonomic lineages. As all obtained freshwater sequences of haptophytes are distantly related to the freshwater species C. parva, the phylogeny demonstrates that haptophytes colonized freshwater on multiple independent occasions. One of these colonizations, which gave rise to HAP-1, took place very early in the history of haptophytes, before the radiation of the Prymnesiophyceae.


Assuntos
Haptófitas/classificação , Haptófitas/isolamento & purificação , Lagos , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/isolamento & purificação , Sequência de Bases , DNA Ribossômico , Haptófitas/genética , Noruega , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 18S/genética , Alinhamento de Sequência , Análise de Sequência de DNA
17.
BMC Microbiol ; 10: 168, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20534135

RESUMO

BACKGROUND: Recent surveys of eukaryote 18S rDNA diversity in marine habitats have uncovered worldwide distribution of the heterotrophic eukaryote phylum Telonemia. Here we investigate the diversity and geographic distribution of Telonemia sequences by in-depth sequencing of several new 18S rDNA clone libraries from both marine and freshwater sites by using a Telonemia-specific PCR strategy. RESULTS: In contrast to earlier studies that have employed eukaryote-wide PCR design, we identified a large and unknown diversity of phylotypes and the first rigorous evidence for several freshwater species, altogether comprising 91 unique sequences. Phylogenies of these and publicly available sequences showed 20 statistically supported sub-clades as well as several solitary phylotypes with no clear phylogenetic affiliation. Most of these sub-clades were composed of phylotypes from different geographic regions. CONCLUSIONS: By using specific PCR primers we reveal a much larger diversity of Telonemia from environmental samples than previously uncovered by eukaryote-wide primers. The new data substantially diminish the geographic structuring of clades identified in earlier studies. Nevertheless, since these clades comprise several distinct phylotypes we cannot exclude endemicity at species level. We identified two freshwater clades and a few solitary phylotypes, implying that Telonemia have colonized freshwater habitats and adapted to the different environmental and ecological conditions at independent occasions.


Assuntos
DNA/genética , Monitoramento Ambiental/métodos , Água Doce/microbiologia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 18S/genética , Água do Mar/microbiologia , Animais , DNA Ribossômico/genética , Demografia , Filogenia
18.
ISME J ; 4(9): 1144-53, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20393574

RESUMO

Protist parasites are ecologically important, as they can have great impact on host population dynamics and functioning of entire ecosystems. Nevertheless, little is known about their prevalence in aquatic habitats. Here, we investigate the diversity and distributional patterns of the protist parasites Perkinsus and Parvilucifera (Perkinsea). Our approach included 454 pyrosequencing of the 18S rDNA gene obtained from a high-altitude lake (Lake Finsevatn, Norway) and phylogenetic analyses of all publicly available sequences related to Perkinsea. The applied PCR primers target a 450 bp region that encompass the variable V4 region of the 18S rDNA gene and have been optimized for the Titanium upgrade of the 454 technology. Nearly 5000 sequences longer than 150 bp were recovered from nearly all eukaryotic supergroups, and of those, 13 unique sequences were affiliated to Perkinsea. Thus, our new strategy for 454 amplicon sequencing was able to recover a large diversity of distantly related eukaryotes and previously unknown species of Perkinsea. In addition, we identified 40 Perkinsea sequences in GenBank generated by other recent diversity surveys. Importantly, phylogenetic analyses of these sequences identified 17 habitat-specific marine and freshwater clades (PERK 1-17). Hence, only a few successful transitions between these habitats have taken place over the entire history of Perkinsea, suggesting that the boundary between marine and fresh waters may constitute a barrier to cross-colonizations for intracellular parasites.


Assuntos
Alveolados/classificação , Alveolados/genética , Biota , DNA Ribossômico/genética , Água Doce/microbiologia , Variação Genética , Filogenia , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , Genes de RNAr , Dados de Sequência Molecular , Noruega , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
19.
Mol Biol Evol ; 27(2): 347-57, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19808864

RESUMO

The aquatic bacterial group SAR11 is one of the most abundant organisms on Earth, with an estimated global population size of 2.4 x 10(28) cells in the oceans. Members of SAR11 have also been detected in brackish and fresh waters, but the evolutionary relationships between the species present in the different environments have been ambiguous. In particular, it was not clear how frequently this lineage has crossed the saline-freshwater boundary during its evolutionary diversification. Due to the huge population size of SAR11 and the potential of microbes for long-distance dispersal, we hypothesized that environmental transitions could have occurred repeatedly during the evolutionary diversification of this group. Here, we have constructed extensive 16S rDNA-based molecular phylogenies and undertaken metagenomic data analyses to assess the frequency of saline-freshwater transitions in SAR11 and to investigate the evolutionary implications of this process. Our analyses indicated that very few saline-freshwater transitions occurred during the evolutionary diversification of SAR11, generating genetically distinct saline and freshwater lineages that do not appear to exchange genes extensively via horizontal gene transfer. In contrast to lineages from saline environments, extant freshwater taxa from diverse, and sometimes distant, geographic locations were very closely related. This points to a rapid diversification and dispersal in fresh waters or to slower evolutionary rates in fresh water SAR11 when compared with marine counterparts. In addition, the colonization of both saline and fresh waters appears to have occurred early in the evolution of SAR11. We conclude that the different biogeochemical conditions that prevail in saline and fresh waters have likely prevented the environmental transitions in SAR11, promoting the evolution of clearly distinct lineages in each environment.


Assuntos
Bactérias/genética , Água Doce/microbiologia , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Evolução Molecular , Filogenia , RNA Ribossômico 16S/genética
20.
Trends Microbiol ; 17(9): 414-22, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19726194

RESUMO

Until recently, the evolutionary relationships between marine and freshwater microbes were unclear, but the use of molecular phylogenies is beginning to shed light on this subject. An increasing amount of studies are showing that marine and freshwater microbes (including viruses) are usually not closely related, often grouping into distinct marine and freshwater phylogenetic clusters, similar to what has been reported before for macroorganisms. These studies indicate that marine-freshwater transitions have been infrequent events during the diversification of microbes and that most of these transitions occurred a long time ago in evolutionary terms. Here we discuss the significance of recent studies addressing this question and consider possible avenues for future research.


Assuntos
Bactérias/genética , Água Doce/microbiologia , Filogenia , Água do Mar/microbiologia , Vírus/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...